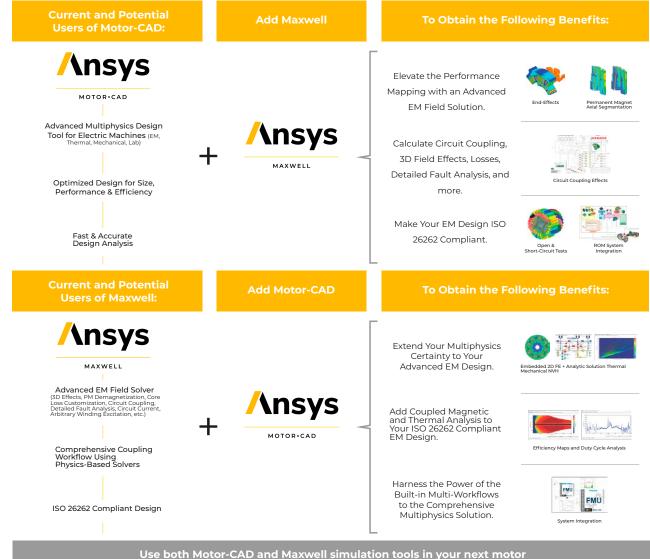
International Electric Machines & Drives Conference

MAY 18-21, 2025 | Houston, TEXAS

IEMDC 2025 Sponsors



Ansys Motor-CAD and Ansys Maxwell: The Ideal Product Combo

Ansys Motor-CAD and Ansys Maxwell simulation solutions can be used separately or together in the design development of electric machines. When you combine these two solutions, they add even greater value to your motor design.

Motor-CAD users can add Maxwell to expand on their electric machine topologies and advanced magnetics capabilities. The efficiency map workflow in Motor-CAD is expanded with connections to Maxwell, which allows for 2D and 3D geometries. Moreover, Maxwell is ISO 26262 certified which would make your electromagnetic (EM) motor design qualified for passenger vehicles.

Maxwell users can add Motor-CAD to simulate the magnetic and thermal performance in the motor design phase. In addition, Motor-CAD is easy to use and can perform preliminary noise and vibration (NVH) analysis and drive cycle efficiency maps.

design project and bring your design to the best conceivable level.

Please scan the QR code to request a free trial for Ansys Motor-CAD

ANSYS, Inc. / 2600 Ansys Drive Canonsburg, PA 15317 U.S.A. / 724.746.3304 / ansysinfo@ansys.com / Visit **www.ansys.com** for more information. © 2023 ANSYS, Inc. All Rights Reserved.

Table of Contents

Welcome From General Chair
2025 Organizing Committee
IEMDC 2025 Partners
2025 General Information
Agenda Program at a Glance
Special Events
Presenter Information
Plenary Sessions Keynote Speakers
Tutorials
Technical Program Schedule
Special Sessions
Oral Sessions
Poster Sessions
Student Demonstrations
Floor Plans
Exhibit Hall
Westin Houston Memorial City36
Exhibitor Directory

Welcome

On behalf of the Organizing Committee, welcome to Houston, TX, for the 2025 IEEE International Electric Machines and Drives Conference (IEMDC 2025)!

IEMDC has been running as a biannual conference since 1997 and is sponsored by four IEEE societies: the Industry Applications Society (IAS), the Industrial Electronics Society (IES), the Power Electronics Society (PELS), and the Power and Energy Society (PES). The conference serves as a premier international platform for exchanging expertise and innovative ideas in the design, operation, analysis, optimization, and practical applications of electric machines, drive systems and their associated power electronics and controls.

The conference program offers a truly enriching experience, featuring eight exceptional tutorials led by industry experts, twenty thought-provoking technical sessions, and three special sessions spotlighting some of the most in-demand topics. Additionally, attendees can engage in two interactive poster sessions designed to foster deeper discussions and networking, while the captivating exhibition presents the latest advancements and groundbreaking technologies shaping the future. Renowned experts from Ansys, Weatherford, Oak Ridge National Lab, and General Motors will deliver insightful keynote talks, offering valuable perspectives on the latest industry advancements and innovations. With a dynamic lineup of knowledge-sharing opportunities, this event is set to inspire, educate, and connect professionals from across the industry.

We are thankful to the committee members, technical track chairs, special session organizers, and reviewers for their dedication and hard work. We also extend our gratitude to the IEMDC Steering Committee for their invaluable guidance. We are thankful to all attendees—including speakers, authors, presenters, session chairs, exhibitors, sponsors, and volunteers—whose contributions and participation have been instrumental in making this event both enriching and impactful.

As a global hub for energy, innovation, and cutting-edge technologies, Houston provides the perfect setting for thought leaders, researchers, and industry professionals to come together and explore the future of electric machines and drives. We look forward to an inspiring event filled with knowledge-sharing, collaboration, and new discoveries in the heart of Space City!

Yao Duan IEMDC 2025 General Chair

Organizing Committee

Organizing Committee Chairs

General Chair

Yao Duan Toshiba International Corporation, USA

Finance Chair

 Goutham Selvaraj Toshiba International Corporation, USA

TPC Co-Chairs

- Jiangbiao He *LEAD TPC University of Tennessee, Knoxville, USA
- Vandana Rallabandi Oak Ridge National Lab, USA
- Guang-Jin Li The University of Sheffield, UK
- Pinjia Zhang Tsinghua University, China
- Malcolm McCulloch Oxford University, UK

Publication Chairs

- Mohammad Sedigh Toulabi Oakland University, USA
- Yacine Amara University of LeHavre, France

Local Chair

 Goutham Selvaraj Toshiba International Corporation, USA

Exhibition Chairs

- Alireza Fatemi General Motors, USA
- Venkateswaran Lakshminarayanan Nayak Corporation, USA

Tutorial Chairs

- Taner Goktas Dokuz Eylul University, Turkey
- Bilal Akin University of Texas at Dallas, USA

Publicity Chairs

- Nishanth Gadiyar Oak Ridge National Lab, USA
- Nick Baker Newcastle University, UK

Plenary Session Chair

Huijun Gao Harbin Institute of Technology, China

Special Session Chairs

- Lei Zhou University of Wisconsin–Madison, USA
- Christopher H. T. Lee Nanyang Technological University, Singapore

Outreach Chair

Peter Liu Toshiba International Corporation, USA

Student Demo Chairs

- Caleb Li Toshiba International Corporation, USA
- Seungdeog Choi Mississippi State University, USA

High School Research EXPO Chairs

- David Liu Taylor High School, Katy, USA
- Wendy Duan Jordan High School, Katy, USA

2

Technical Track Chairs

TT-1 – Rotating Electric Machines

Glynn Atkinson Newcastle University, UK

• Xiao Chen The University of Sheffield, UK

Yu Wang Fudan University, China

Panos Panagiotou The University of Sheffield, UK

TT-2 – Electric Drives

Appa Rao Dekka Lakehead University, Canada

Hao Chen Zhejiang University, China

Su-Dan Huang Shenzhen University, China

TT-3 – Special Machines, Electromagnetic Actuators and Sensors

Nick Baker Newcastle University, UK

Xin Zhao York University, UK

Dawei Liang The University of Sheffield, UK

Steering Committee

Chair

Radu Bojoi Politecnico di Torino, Italy

Members

Antonio J. Marques Cardoso University of Beira Interior, Portugal

Ali M. Bazzi University of Connecticut, USA

- Alireza Fatemi General Motors, USA
- Ayman EL-Refaie Marquette University, USA

TT-4 – Thermal. Materials and

University College London, UK

Oak Ridge National Lab, USA

University of Technology, China

Beijing Jiaotong University, China

University of Tennessee, USA

TT-5 - Design Optimization,

Modeling and Simulation

Efficiency Challenges

Lavanya Vadamola Altair, USA

Nishanth Gadiyar

Feng Niu

Reza Ilka

Dayong Zheng

Mohanraj Muthusamy POWERSYS, Canada

Pedram Asef

- Gerard-Andre Capolino University of Picardie "Jules Verne", France
- Herbert Hess University of Idaho, USA

TT-6 – Condition Monitoring, Fault Diagnosis and Prognosis

- Shaopeng Wu Harbin Institute of Technology, China
- Ahmed Hembel General Motors, USA
- Dawei Li Huazhong University of Science and Technology, China
- Mojtaba Afshar University of Texas at Dallas, USA

TT-7 – Transportation Applications

- Athar Hanif The Ohio State University, USA
- Feng Guo University of Wisconsin, USA
- Zheng Wang Southeast University, China

TT-8 – Energy and Grid-Connected Applications

- Siddavatam R. P. Reddy IIT Bombay, India
- Qiang Wei Lakehead University, Canada

- Dan M. lonel University of Kentucky, USA
- Leila Parsa University of California, Santa Cruz, USA
- Michael Sedlack NRG Energy
- Osama Mohammed Florida International University, USA

The IEMDC Organizing Committee would like to express its gratitude for the generous support received from the following:

Platinum Sponsor

2025 General Information

Registration Hours

Magnolia Foyer

Sunday, May 18	
Monday, May 19	
Tuesday, May 20	
Wednesday, May 21	

Exhibit Hall Hours – Azalea Ballroom

Monday, May 19 4:00 PM - 7:30 PM	Λ
Tuesday, May 20	Λ

Attendees have full access to Wi-Fi in the meeting space, foyers, and exhibit hall.

Network: SSID: Westin_CONFERENCE

Wi-Fi code: IEMDC2025

Rules and Regulations

Consent to Use of Photographic Images

Registration and attendance at, or participation in, IEMDC constitutes an agreement by the registrant to IEMDC's use and distribution (both now and in the future) of the registrant or attendee's image or voice in photographs, videotapes, electronic reproductions and audiotapes of such events and activities.

Cameras and Recording Devices

The use of cameras and/or recorders is strictly prohibited during the oral and poster sessions. Limited use is allowed for exhibitors in their own booth area. Personal photography is allowed at social functions.

Distributing Commercial Material at IEMDC

Exhibitors: Exhibitors may only distribute commercial materials in their tabletop. IEMDC reserves the right to remove without notice any materials not in compliance with this policy.

Non-Exhibitors: Distribution of commercial material in the IEMDC 2025 hotel space (including directly to the hotel rooms of IEMDC participants), meeting space and Exhibit Hall by people or organizations not participating in the exposition is prohibited. IEMDC reserves the right to remove without notice any materials not in compliance with this policy.

Event Conduct and Safety Statement:

IEEE believes that science, technology, and engineering are fundamental human activities, for which openness, international collaboration, and the free flow of talent and ideas are essential. Its meetings, conferences, and other events seek to

<hr/>
×

enable engaging, thought provoking conversations that support IEEE's core mission of advancing technology for humanity. Accordingly, IEEE is committed to providing a safe, productive, and welcoming environment to all participants, including staff and vendors, at IEEErelated events. IEEE has no tolerance for discrimination, harassment, or bullying in any form at IEEE-related events. All participants have the right to pursue shared interests without harassment or discrimination in an environment that supports diversity and inclusion. Participants are expected to adhere to these principles and respect the rights of others. IEEE seeks to provide a secure environment at its events. Participants should report any behavior inconsistent with the principles outlined here, to on site staff, security or venue personnel, or to **eventconduct@ieee.org**.

Agenda program at a glance

Sunday | May 18, 2025

7:00 AM - 6:00 PM	Registration MAGNOLIA FOYER					
12:00 PM - 4:00 PM	Speaker Ready Room SUNFLOWER					
8:00 AM - 11:30 AM	Tutorials (Note there will be a Coffee Break from 9:30 AM – 10:00 AM in the Magnolia Foyer)					
	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 1		ROOM: MAGNOLIA 3		
	Tutorial 1: Multiphysics Equivalent Circuit Modeling for Electric Machinery – From Macro-scale to Micro-scale	Tutorial 2: Magnetic and Thermal Self-Commissioning Techniques for AC Motor Drives and Inverters		Tutorial 3: 3D Printing for Next-Gen Electrical Machines: Magnetic Materials, Windings, Thermal management, and Electrical Insulation		
11:30 AM - 1:00 PM	Lunch On Your Own					
1:00 PM - 3:00 PM	Tutorials (Note there will be a Coffee Break from 3:00 PM – 3:30 PM in the Magnolia Foyer)					
	ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2		ROOM: MAGNOLIA 3		
	Tutorial 4: Regenerative Motor Drive Systems for Industrial Applications	Tutorial 5: High Power Density Motor Equipped with Additively Manufactured Windings Integrated with Advanced Cooling and Modular Integrated Power Electronics		Tutorial 6: Innovative Approaches to Electric Motor Design: Al-Driven Reduced-Order Modeling and Geometry Optimization		
3:00 PM - 3:30 PM	Coffee Break					
3:30 PM - 5:30 PM	Tutorials (Note there will be a Coffee Break from 3:00 PM – 3:30 PM in the Magnolia Foyer)					
	ROOM: MAGNOLIA 2		ROOM: MAGNOLIA 3			
	Tutorial 7: Current Source Inverters using SiC and GaN WideTutorial 8: Design, Modelling and Mathematical Formulations ofBandgap Devices and Comparison with Voltage Source InvertersPM-Free Special Machines: from Theory to Practice					
5:30 PM - 6:30 PM	Light Cocktail Welcome Reception	WISTERIA BALLROO	M			
6:00 PM - 7:00 PM	High School Engineering Poster EXPO WISTERIA BALLROOM					

Monday | May 19, 2025 Expo Open 4:00 PM - 7:30 PM

7:30 AM - 3:30 PM	Registration MAGNOL	IA FOYER				
7:00 AM - 8:00 AM	Speaker's Breakfast	Speaker's Breakfast HIBISCUS BALLROOM				
7:30 AM - 4:00 PM	Speaker Ready Room	Speaker Ready Room SUNFLOWER				
8:00 AM - 9:40 AM	Conference Opening + Plenary Session 1 WISTERIA BALLROOM					
9:40 AM - 10:00 AM	AM Coffee Break MAGNOLIA FOYER					
10:00 AM - 12:00 PM			Oral/Special Sessions	5		
	POOM: MACNOLIA 1	POOM: MACNOLIA 2			DOOM: CYDDESS	

ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 3	ROOM: MAGNOLIA 4	ROOM: CYPRESS
Oral Session 1: Rotating Electric Machines 1	Oral Session 2: Electric Drives 1	Oral Session 3: Special Machines, Electromagnetic Actuators and Sensors 1	Oral Session 4: Thermal, Materials and Efficiency Challenges 1	Special Session 1: Advancing Rare-Earth- Free and Sustainable Electric Machine Design: Innovations and

Applications

Monday | May 19, 2025 (Continued) Expo Open 4:00 PM - 7:30 PM

12:00 PM - 1:30 PM Lunch On Own

1:30 PM - 3:30 PM	Oral/Special Sessions				
	ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 3	ROOM: MAGNOLIA 4	ROOM: CYPRESS
	Oral Session 5: Design Optimization, Modeling and Simulation 1	Oral Session 6: Condition Monitoring, Fault Diagnosis and Prognosis	Oral Session 7: Transportation Applications 1	Oral Session 8: Energy and Grid-Connected Applications 1	Special Session 2: Novel Materials and Additive Manufacturing Techniques to Improve the Performance Limits of Electric Machines
3:30 PM - 4:00 PM	M PM Coffee Break MAGNOLIA FOYER				
4:00 PM - 7:30 PM	EXPO Open AZALEA BALLROOM				
5:00 PM - 7:30 PM	A EXPO Reception AZALEA BALLROOM				
5:00 PM - 7:30 PM	Student Demos AZALEA BALLROOM				
5:30 PM - 7:00 PM	Poster Session I AZA	ALEA BALLROOM			

Tuesday | May 20, 2025 Expo Open 12:00 PM - 5:00 PM

7:30 AM - 3:30 PM	Registration MAGNOLIA FOYER				
7:00 AM - 8:00 AM	Speaker's Breakfast HIBISCUS BALLROOM				
7:30 AM - 2:00 PM	Speaker Ready Room	n SUNFLOWER			
8:00 AM - 9:30 AM	Plenary Session II WISTERIA BALLROOM				
9:30 AM - 10:00 AM	AM Coffee Break MA	AGNOLIA FOYER			
10:00 AM - 12:00 PM	Oral/Special Sessions				
	ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 3	ROOM: MAGNOLIA 4	ROOM: CYPRESS
	Oral Session 9: Rotating Electric Machines 2	Oral Session 10: Electric Drives 2	Oral Session 11: Special Machines, Electromagnetic Actuators and Sensors 2	Oral Session 12: Thermal, Materials and Efficiency Challenges 2	Special Session 3: Development of Advanced Permanent Magnet Machines and Drives for E-Mobility
12:00 PM - 5:00 PM	EXPO Open AZALEA	BALLROOM			
12:00 PM - 1:30 PM	EXPO Lunch AZALEA	BALLROOM			
1:30 PM - 3:00 PM	Poster Session II AZ	ALEA BALLROOM			
1:30 PM - 5:00 PM	Student Demos AZALEA BALLROOM				
3:00 PM - 3:30 PM	PM Coffee Break AZALEA BALLROOM				
	Poster Session III AZALEA BALLROOM				
3:30 PM - 5:00 PM	Poster Session III A	ZALEA BALLROOM			
3:30 PM - 5:00 PM 5:00 PM	Poster Session III A EXPO Closes AZALEA				

Agenda | PROGRAM AT A GLANCE

Wednesday | May 21, 2025

7:30 AM - 11:00 AM	Registration MAGNOLIA FOYER			
7:00 AM - 8:00 AM	Speaker's Breakfast HIBISCUS BALLROOM			
7:30 AM - 8:30 AM	Speaker Ready Room SUNFLOWER			
8:00 AM - 10:00 AM	Oral Sessions			
	ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 3	ROOM: MAGNOLIA 4
	Oral Session 13: Design Optimization, Modeling and Simulation 2	Oral Session 14: Condition Monitoring, Fault Diagnosis and Prognosis 2	Oral Session 15: Transportation Applications 2	Oral Session 16: Special Machines, Electromagnetic Actuators and Sensors 3
10:00 AM - 10:30 AM	AM Coffee Break MAGNOLIA FOYER			
10:30 AM - 12:10 PM	Oral Sessions			
	ROOM: MAGNOLIA 1	ROOM: MAGNOLIA 2	ROOM: MAGNOLIA 3	ROOM: MAGNOLIA 4
	Oral Session 17: Rotating Electric Machines 3	Oral Session 18: Electric Drives 3	Oral Session 19: Design Optimization, Modeling and Simulation 3	Oral Session 20: Transportation Applications 3
12:30 PM - 2:00 PM	Awards Lunch WISTERIA BA	ALLROOM		

Notes

IEMDC Light Cocktail Welcome Reception

Sunday, May 18 | 5:30 PM - 6:30 PM LOCATION: WISTERIA BALLROOM

The conference will host a Sunday Cocktail Welcome Reception welcoming colleagues. This is a great opportunity to kick off the conference and catch up and network with colleagues you may have not seen in a while.

High School Engineering Poster Expo

Sunday, May 18 | 6:00 PM - 7:00 PM LOCATION: WISTERIA BALLROOM

The IEEE IEMDC is pleased to announce its inaugural high school outreach event! The High School Engineering Poster Expo showcases the exciting work carried out by Houston local high school students in the field of electrical and electronics engineering, as well as AI. This event provides a great opportunity for local high school students to receive feedback, network with university professors and industry professionals, as well as attracting more potential students into electrical and electronics engineering.

Exhibit Hall Opening Reception

Monday, May 19 | 5:00 PM - 7:30 PM LOCATION: AZALEA BALLROOM

Join us for the opening of the IEMDC 2025 Exhibit Hall! Enjoy a drink and tastes of hors d'oeuvres from around the world as you mingle with industry partners and friends and explore the latest advances in products and services to meet the needs of current and future challenges facing the energy conversion industry.

Banquet Dinner

Tuesday, May 20 | 6:00 PM - 8:00 PM LOCATION: WISTERIA BALLROOM

Join us as we celebrate our biannual conference with a plated three course meal. The atmosphere will ensure easy conversation and meaningful connections, providing a pleasant conclusion to the day's technical sessions and discussions.

IEMDC Awards Lunch/Conference Closing

Wednesday, May 21 | 12:30 PM - 2:00 PM LOCATION: WISTERIA BALLROOM

We will gather to celebrate the great achievement of some of our colleagues and recognize our winning papers for Best Student Presentation, Best student poster, and Student Demo Awards.

Things To Do In Houston

Houston Space Center

Space Center Houston offers a variety of tours that provide unique insights into NASA's Johnson Space Center.The complimentary NASA Tram Tour, included with general admission, takes visitors through astronaut training facilities, historic spacecraft, and cutting-edge research labs. Highlights include the option to disembark at George W.S. Abbey Rocket Park to view one of the remaining Saturn V rockets.

Please note this is not an organized tour by IEMDC, but an option to book on your own should you wish to see Houston sights outside of the conference venue.

Please visit their website at: https://spacecenter.org/ for more information and to book your tickets.

*The Houston Space Center is approximately an hour drive from IEMDC 2025's host venue. Check out the QR code below for more ideas and places to visit while in Houston!

Presenter Information

Speaker Ready Room Hours

Sunday, May 18	12:00 PM - 4:00 PM
Monday, May 19	7:30 AM - 4:00 PM
Tuesday, May 20	7:30 AM - 2:00 PM
Wednesday, May 21	7:30 AM - 8:30 AM

Oral Presenters' Orientation

A Speakers' Breakfast will be held for oral presenters and session chairs from 7:00 AM – 8:00 AM Monday, Tuesday and Wednesday in the Hibiscus Ballroom.

Oral presenters should meet with their respective session chairs to review the format and timing of their session and alert conference management of any changes.Presenters should print a short introduction (3-4 lines) that can be used by the session chair to introduce the presenter and bring it to speaker's breakfast. Oral Presenters should attend the orientation each day that they are scheduled to provide an oral presentation (or chair a session); you may only attend on days on which you are scheduled to speak.

Poster Presenters

Poster Presentation Schedule

Monday, May 19 and Tuesday, May 20 LOCATION: AZALEA BALLROOM

POSTER SESSION I	
Monday, May 19	5:30 PM - 7:00 PM
POSTER SESSION II Tuesday, May 20	1:30 PM - 3:00 PM
POSTER SESSION III	
Tuesday, May 20	3:30 PM – 5:00 PM

Poster presenters should be available for questions at their display boards during their scheduled poster presentation time. Your poster will be assigned a specific poster board number and section referenced in the Poster Session section of the program. If you are unsure which session your poster should be presented, please review the complete Technical Session schedule.

*For a complete list of details regarding oral and poster presentations please visit our website at: https://www.iemdc.org/authors/presenting-at-the-conference/

Plenary Sessions keynote speakers

Monday, 19 May | 8:10 AM - 8:55 AM

WISTERIA BALLROOM

Simulation Advancements for Electric Machine Technology and Applications

Mark Solveson

Product Manager Ansys

BIO: Mark has many years of industry experience and numerous patents with the Research and Development Center at Eaton Corporation, where he specialized in the design and analysis of electromechanical devices. Today, he continues with simulation specialization using Ansys electromagnetic FEA and system simulation software for power distribution, automotive, offroad vehicle, healthcare, aerospace, and renewable energy industries. At Ansys, he worked as an Application Engineer, a Manager for the North America Application Engineering team, and now as

Product Manager in the Electronics Business Unit responsible for Ansys Motor-CAD, Maxwell, and ConceptEV.

ABSTRACT: Simulation tools are prevalent in all aspects of engineering and enable engineers to design better products. They can help reduce cost, make insightful decisions about material changes, predict outcomes for untestable scenarios, and cut engineering costs by reducing the build-and-test cycle. A market leader in simulation, Ansys software sets a high standard in mechanical and computational fluid dynamics, as well as electrical and electromagnetics. This talk will focus on new and exciting simulation capabilities that advance electric machine technology and show how simulation can solve many of today's toughest challenges.

Monday, 19 May | 8:55 AM - 9:40 AM

WISTERIA BALLROOM

The Role of Variable Speed Drives (VSD) in Artificial Lift Applications Within O&G Industry

Mohammed Arefeen

Global Product Manager Automation, Weatherford International

BIO: Dr. Mohammed Arefeen has over 30 years of experience in variable speed drives (VSD), automation and power electronics applications. Dr. Arefeen is currently working as the Global Product Manager - Automation at Weatherford International, leveraging his experience and expertise to develop and commercialize automation solutions for the O&G industry. Dr. Arefeen completed his Ph.D at Texas A&M University, College Station, TX. in 1994.

ABSTRACT: This presentation is on the role of variable speed drives (VSD) in artificial lift applications within the O&G industry. The goal is not to discuss any specific brand or the benefits of any specific algorithm. Instead, I will share my experiences in general terms and will discuss the solutions various VSDs offer for this challenging application. The session will end with the discussion of future trends making VSDs even more crucial.

Plenary Sessions | KEYNOTE SPEAKERS

Tuesday, 20 May | 8:00 AM - 8:45 AM

WISTERIA BALLROOM

Next Generation Electric Traction Drives for Medium and Heavy Duty Vehicles

Burak Ozpineci

Section Head and Corporate Fellow ORNL Oak Ridge National Lab

BIO: Burak Ozpineci earned his B.S. degree in electrical engineering from Orta Dogu Technical University, Ankara, Turkey, in 1994. He then completed his M.S. and Ph.D. degrees in electrical engineering at the University of Tennessee, Knoxville, in 1998 and 2002, respectively. Since 2001, he has been with Oak Ridge National Laboratory, where he began as a student and has held positions as a researcher, founding group leader of the Power and Energy Systems Group, group leader of the Power Electronics and Electric Machinery Group. He currently serves as a Corporate Fellow and the Section Head of the Vehicle and Mobility Systems Research Section. Additionally, he has a joint

faculty appointment with The University of Tennessee. Dr. Ozpineci is a Fellow of IEEE.

ABSTRACT: The transition to electrified transportation presents unique challenges for medium- and heavy-duty vehicles (MHDVs), requiring innovations in cost, reliability, and performance. The NEXT-DRIVE project is helping this transformation by reimagining the design and development of electric traction drive systems. NEXT-DRIVE aims to cut costs by 20%, increase volumetric power density by 20%, and achieve an operational lifetime of 1 million miles or 25,000 hours for Class 8 trucks by 2030.

Through the integration of high-fidelity multiphysics modeling with artificial intelligence and machine learning, NEXT-DRIVE is delivering high-voltage, high-torque electric drive systems that optimize efficiency, reliability, and cost-effectiveness. These projects are not only targeting longer lifetimes and higher asset utilization but also accelerating the widespread adoption of electric drive-based MHDVs.

The presentation will focus on the innovative approaches driving the success of NEXT-DRIVE, explore the project's ambitious goals, and discuss its future impact on the future of sustainable transportation for MHDVs.

Tuesday, 20 May | 8:45 AM - 9:30 AM

WISTERIA BALLROOM

Powering Forward Automotive Electrification

Dr. Sanjeev Naik

Director, Energy & Propulsion Systems Research GM

BIO: Dr. Sanjeev Naik is Director of Energy & Propulsion System Research at GM. He has held multiple management and technical leadership positions in vehicle electrification, propulsion systems, controls, and active safety. Dr. Naik is a recipient of GM's Boss Kettering Award, the Charles McCuen R&D Award, and the Chairman's Honors Award. His technical interests are in developing innovative electric mobility solutions.

He is an IEEE Senior Member, an SAE Member, and has several publications and over fifty patents. Sanjeev received his Bachelor's degree from IIT Bombay, India, M.S.E.E. from the University of Michigan, Ann Arbor, and Ph.D. from the University of Illinois, Urbana–Champaign, all in electrical engineering, and M.B.A. in corporate strategy from the University of Michigan, Ann Arbor.

ABSTRACT: Vehicle electrification is now mainstream and expected to show continued growth. This talk will offer perspectives on automotive industry challenges, opportunities, and trends in the electrification context.

More information may be found at IEMDC.org

Sunday, May 18 | 8:00AM - 11:30 AM

Tutorial 1: Multiphysics Equivalent Circuit Modeling for Electric Machinery – From Macro-scale to Micro-scale

MAGNOLIA 2

Instructors:

Matthew Gardner, University of Texas at Dallas Baoyun Ge, Georgia Institute of Technology Peng Han, Ansys

Equivalent circuits have long been used to understand and analyze electric machines. Traditionally, these equivalent circuits, based on lumped elements capturing the main physical characteristics, have provided an intuitive way to explain electric, magnetic, and thermal phenomena. However, high-resolution analysis is necessary in high-fidelity virtual prototyping. To this end, finite element analysis (FEA) is usually the ultimate tool. In this tutorial, we illustrate a continuous spectrum from traditional macro-scale equivalent circuit modeling to micro-scale FEA using equivalent circuits. First, a unified circuit view of multiphysics FEA for electric machines is presented. Specifically, FEA of electromagnetic, thermal, and elastic fields are viewed as constructing and solving equivalent circuits at the micro-scale (mesh) level. The RL and RC circuits familiar to electrical engineers are now transferred to physical processes beyond electrical circuits. Secondly, we introduce recent advancements in magnetic equivalent circuit theory. A new element, magductance, can be used to account for eddy currents. The existence of magductance is indicated in the unified circuit view presented first. the electric power can then be calculated from the magnetic equivalent circuit. Examples using vector magnetic circuit theory, which employs reluctance and magductance, to design, analyze, and control various electromagnetic devices are presented. Lastly, we discuss how to solve these equivalent circuits rapidly, which is necessary for micro-scale evaluation. We discuss using circuit-solving techniques to systematically and efficiently set up a matrix equation taking advantage of symmetric boundary conditions, how to efficiently solve the matrix equation, and how to solve nonlinear equivalent circuits.

Tutorial 2: Magnetic and Thermal Selfcommissioning Techniques for AC Motor Drives and Inverters

MAGNOLIA 1

Instructors:

Paolo Pescetto, Politecnico di Torino Shafiq Odhano, Newcastle University Marko Hinkkanen, Aalto University Luca Peretti, KTH

Accurate identification of motor drive parameters, including machine and converter characteristics, is essential in various applications. Precise measurement of these parameters is critical for validating machine design procedures and implementing model-based control schemes. Among these parameters, measuring flux saturation curves is especially crucial, as it significantly impacts drive performance. Additionally, understanding the operating limits of the drive necessitates thermal characterization, which plays a key role in optimizing efficiency and performance. Moreover, voltage source inverters introduce non-linear distortion of the phase voltage, which can impair control accuracy and limit performance, particularly in low-speed or sensorless applications. While precise drive characterization can be achieved in a controlled laboratory environment, it is often impractical in industrial settings. This is due to the lack of dedicated testing facilities, the high variability caused by manufacturing tolerances, and time constraints on production lines. In such cases, a self-commissioning approach is commonly employed, where motor drive parameters are determined through fast, automatic tests. These tests are conducted with the drive directly mounted in it target application, without requiring additional measurement hardware beyond the drive itself. While self-commissioning tests provide lower accuracy compared to laboratory characterizations, they offer sufficient precision for calibrating motor control algorithms, even in sensorless applications.

This tutorial explores the state of the art in self-commissioning procedures for both synchronous and asynchronous motor drives, addressing both motor and converter characteristics. Special attention will be given to evaluating saturation characteristics and thermal parameters, as well as methods for compensating for non-linear voltage drops in the converter.

Tutorial 3: 3D Printing for Next-Gen Electrical Machines: Magnetic Materials, Windings, Thermal management, and Electrical Insulation

MAGNOLIA 3

Instructors:

Dr. Ahmed Selema, USP3D – Ghent University **Prof. Dr. Peter Sergeant**, Ghent University

This tutorial aims to explore the advancements and challenges in the manufacturability of electrical machines through the integration of 3D printing technology. The utilization of additive manufacturing (AM) technology in electrical machines has revolutionized the traditional manufacturing process, offering new design freedoms, enhanced material options, and the potential for complex geometries. This session seeks to bring together researchers and practitioners to share their latest findings, theoretical advancements, and practical insights in the realm of 3D printing technology applied to electrical machine design and manufacturing.

Sunday, May 18 | 1:00 PM - 3:00 PM

Tutorial 4: Regenerative Motor Drive Systems for Industrial Applications

MAGNOLIA 1

Instructors:

Ahmed Sayed Ahmed, Rockwell Automation Yogesh Patel, Rockwell Automation

Over the last few decades, and especially with recent green energy initiatives, regenerative motor-drive systems have become more widely used in numerous industrial applications. The utilization of Active Front End (AFE) power converters coupled with inverters is one of the most accepted power electronic configurations for these drives. Although much attention is given to the design and control of AFE power converters in grid-tie applications, the same cannot be said for regenerative motor-drive applications. The main advantages of adopting AFE-based power converters in regenerative motor-drive systems include the capability to supply energy back to the grid instead of dissipating excess energy in a resistor. This often requires additional cooling and space. They also offer unity power factor and low total harmonic distortion, which often results in reduced sizing of the main feeder, decreased system losses, and improved system efficiency. AFE-based power converters can also be properly controlled to inject reactive power compensation to the line, thereby enhancing the power factor of the entire utility. This tutorial focuses on the design and analysis of industrial AFEbased power converters in regenerative motor-drive systems. It is divided into four main parts: the first part discusses type of adjustable drives, drives applications. The second part discusses power electronics and filter design, highlighting the main trade-offs in the design process along with thermal considerations; the third part centers on different modes of operation and control design; and the fourth part discusses technical application challenges associated with the deployment and operation of AFE-based power converters.

Tutorial 5: High Power Density Motor Equipped with Additively Manufactured Windings Integrated with Advanced Cooling and Modular Integrated Power Electronics

MAGNOLIA 2

Instructors:

Ayman EL-Refaie, Marquette University Nathan Weise, Marquette University Ali Al-Qarni, Marquette University Armin Ebrahimian, Marquette University Salar Koushan, Marquette University Seyed Iman Hosseini Sabzevari, Marquette University

There has been a special focus on aerospace electrification over the past few years. Electric machines and their drive systems have been at the center of these research efforts. Considering the power density and efficiency requirements for aerospace electrification, conventional machine/drive systems might not be feasible for such an application. To that end, the concept of integration of the machine, drive system, and cooling system known as Integrated Modular Motor Drive (IMMD) has been introduced. On the power electronics side, the possibility of achieving high power density and efficiency is increased by the emergence of the wide band gap devices (WBGDs). Their intrinsic benefits such as low on-state resistance and fast turn on/off speed contribute to lower conduction and switching losses which in turn lead to higher efficiency. However, designing a proper thermal management system, optimized component placement, and optimal PCB layout is challenging due to processing high power at small footprints. On the machine side, the focus is typically on increasing the machine electric and magnetic loading as well as the mechanical tip speed. This can be achieved via novel machine topologies, advanced materials, advanced manufacturing as well as integrated systems with shared advanced cooling. In this tutorial, the step-by-step design of a motor and its integrated drive system is presented. The advanced cooling system design for both motor and drive system is described. Finally, the overall integrated system is demonstrated, and test results are presented.

IEMDC 2025 | www.iemdc.org

Tutorial 6: Innovative Approaches to Electric Motor Design: Al-Driven Reduced-Order Modeling and Geometry Optimization

MAGNOLIA 3

Instructors: Philippe Wendling, Altair Co. Farid Zidat, Altair Co. Lavanya Vadamodala, Altair Co.

This tutorial presents two innovative approaches to enhancing electric motor design and performance.

1. Leveraging AI for Reduced-Order Modeling (RomAI): We explore a hybrid methodology that combines finite element analysis (FEA) data with artificial intelligence (AI) to create reduced-order models. This approach aims to balance accuracy and computational efficiency, using an induction motor (IM) model as a case study. Participants will learn to integrate these techniques to improve efficiency calculations across various operating conditions.

2. Optimizing E-Motor Geometry with Physics AI: The second focus is on Physics AI, which identifies the relationship between shape and performance in physics applications. Users will be guided through optimizing the geometry of electric motors, specifically the Interior Permanent Magnet Synchronous Motor (IPMSM). The tutorial covers setting up a motor simulation dataset, developing an AI model, and refining the optimization process to achieve enhanced performance predictions.

By the end of this tutorial, participants will gain valuable insights into Al-driven modeling and geometric optimization techniques for electric motors.

Sunday, May 18 | 3:30 PM - 5:30 PM

Tutorial 7: Current Source Inverters using SiC and GaN Wide Bandgap Devices and Comparison with Voltage Source Inverters

MAGNOLIA 2

Instructors: Bulent Sarlioglu, University of Wisconsin-Madison, USA

Most recently, with the advance of state-of-the-art wide bandgap devices, the efficiency of the motor drives can be increased significantly compared to using Si devices such as IGBTs. The 2-level voltage source inverter (VSI) is the dominant choice for motor drive applications that are currently in production. However, there are some serious limitations experienced by VSIs when Si-based switches are directly replaced by WBG switches that are attributable to the extremely high dv/dt at the switch output terminals. These challenges include elevated electromagnetic interference (EMI) amplitudes, motor terminal over voltages, and bearing damage risks due to discharge currents. The emergence of WBG power devices opens opportunities for current source inverters (CSIs) to provide a promising alternative drive configuration for motor drive applications. In this tutorial, the CSI will be introduced as a promising alternative approach for applying WBG switches in future motor drives that overcomes several of the key obstacles that hinder their use in conventional VSIs as well as offering some intriguing application advantages made possible by the special features of the CSI topology. The advantages and challenges of CSIs using WBG devices will be discussed. Special attention will be focused on the game-changing potential of M-BD switches in future CSI-based integrated motor drives. Finally, a comprehensive comparison between VSI can CSI with DC-voltage power source and sine voltage output will be introduced including passive components, output performance, efficiency, and volume. Two projects that applied the combination of wide-bandgap power switches and a CSI into an integrated motor drive using a high-performance PM synchronous motor will be presented as examples.

Tutorial 8: Design, Modelling and Mathematical Formulations of PM-Free Special Machines: from Theory to Practice

MAGNOLIA 3

Instructors:

Doga Ceylan, Eindhoven Univ. of Tech. Joost van Zwieten, Eindhoven Univ. of Tech. Mitrofan Curti, Eindhoven Univ. of Tech.

This tutorial provides a comprehensive introduction to modeling and designing special permanent magnet-free (PM-free) electric machines using open-source numerical tools, taking the participants from the mathematical concepts up to computation of performance indicators of these machines. We begin by exploring the motivations behind these machines, outlining their advantages and trade-offs compared to traditional permanent magnet designs. The fundamentals of magnetic field theory are introduced, covering Maxwell's equations, magnetostatics, material models, losses, and performance computation methods. The tutorial then delves into the capabilities of Python-based numerical library Nutils, outlining its application in solving complex electromagnetic problems. Participants will learn how to formulate and solve magnetostatic problems, including simple airgap model to familiarize them with the library, and finally, a reluctance machine example will be used to demonstrate how the losses, and torque production, among other features, are computed. Hands-on exercises guide participants through implementing these concepts using example scripts, enabling them to visualize magnetic field distributions, calculate inductances, and compute torque profiles. This tutorial equips attendees with the knowledge and practical skills necessary to design and analyze rare earth PM-free electric machines effectively, leveraging the power of open-source tools, giving insights on the backbones functionality of numerical tools.

Technical Program SPECIAL SESSIONS

Monday, May 19 | 10:00 AM - 12:00 PM

Special Session 1: Advancing Rare-Earth-Free and Sustainable Electric Machine Design: Innovations and Applications

CYPRESS

Organizers:

- **Dr. Bulent Sarlioglu,** Professor, University of Wisconsin-Madison
- Dr. Woongkul Lee, Assistant Professor, Purdue University

Speakers:

Babak Fahimi, Professor and Distinguished Chair of Engineering, University of Texas at Dallas, USA
Peter Sergeant, Professor, Ghent University, Belgium
Seungdeog Choi, Professor, Mississippi State University, USA
Prof. Simone Ferrari, Assistant Professor, Politecnico di Torino, Italy

Barrie Mecrow, *Professor, Newcastle University, UK* **Akira Chiba,** *Professor, Institute of Science Tokyo, Japan*

This special session will delve into pioneering advancements in the design, development, and application of rare-earth-free and sustainable electric machines. In response to the urgent demand for environmentally friendly and resource-efficient technologies, the session will focus on innovative materials, advanced topologies, recyclability, and methodologies that mitigate or eliminate the reliance on rare-earth elements while optimizing efficiency and performance. By bringing together leading researchers and industry experts, the session aims to highlight cutting-edge strategies and sustainable practices in electric machine design, fostering technological progress aligned with the global transition toward a sustainable and low-carbon future.

Monday, May 19 | 1:30 PM - 3:30 PM

Special Session 2: Novel Materials and Additive Manufacturing Techniques to Improve the Performance Limits of Electric Machines

CYPRESS

Organizers:

Dr. Nishanth Gadiyar, *Oak Ridge National Laboratory* **Dr. Vandana Rallabandi,** *Oak Ridge National Laboratory* **Dr. Chins Chinnasamy,** *Oak Ridge National Laboratory*

Speakers:

Eric Severson, Associate Professor, University of Minnesota **Todd Monson,** Principal Member of the Technical Staff, Sandia National Lab

Nick Simpson, Associate Professor. University of Bristol, U.K. Gaoyuan Ouyang, Professor, Iowa State University and AMES National Lab

Prof. Ayman EL-Refaie, Marquette University, USA

The rapidly growing demand for more efficient, compact, and powerful electric machines is driving innovation in both materials science and manufacturing techniques. Electric machines are central to various applications, including electric vehicles (EVs), renewable energy systems, and industrial automation. However, the achievable power density, efficiency, and other performance metrics are limited by today's materials and manufacturing methods. This special session explores the potential of novel materials and advanced additive manufacturing (AM) techniques to push the boundaries of electric machine performance, addressing the challenges of energy efficiency, weight reduction, and cost-effectiveness.

New materials with enhanced electrical, magnetic, and thermal properties are at the fore front of electric machine innovation. For instance, advanced soft magnetic materials, ultra-conductors, and nanostructured materials are poised to dramatically improve the performance of components such as stators, rotors, and windings. These materials offer superior magnetic permeability, lower eddy current losses, and improved conductivity, leading to more efficient and power-dense machines.

Additive manufacturing (AM) presents a revolutionary approach for producing complex geometries and highly customized components, which were previously impossible or prohibitively expensive using traditional manufacturing methods. AM is a key enabler for the creation of electric machine components with optimized topologies, reduced material waste, and enhanced thermal and magnetic properties. These techniques also facilitate rapid prototyping and short production cycles, allowing for more flexible and cost-effective design iterations. The ability to produce complex multi-material structures using AM further enables the integration of novel materials within electric machines, offering customized solutions to specific performance needs.

Advanced materials and additive manufacturing techniques together present a paradigm shift in the design and production of electric machines. By enabling the development of components with enhanced performance characteristics, these innovations will help address the growing demands for higher power densities, energy efficiency, and reliability in a wide range of applications. This session will provide a platform for researchers, engineers, and industry professionals to explore the latest advancements, share insights, and discuss the challenges and future opportunities in utilizing novel materials and additive manufacturing for electric machine performance improvement.

Special Sessions

Tuesday, May 20 | 10:00 AM - 12:00 PM

Special Session 3: Development of Advanced Permanent Magnet Machines and Drives for E-Mobility

CYPRESS

Organizers:

Feng Chai, Full Professor, Harbin Institute of Technology Yanlei Yu, Research Fellow, Nanyang Technological University

Speakers:

Josep Pou, Professor, City University of Hong Kong Feng Chai, Professor, Harbin Institute of Technology Yulong Pei, Professor, Harbin Institute of Technology Xin Yuan, Assistant Professor, University of Aberdeen Qingxiang Liu, Research Fellow, Nanyang Technological University

Jingwei Zhu, Research Fellow, Nanyang Technological University

This special section highlights advancements in permanent magnet machines and drives for E-mobility. As modern transportation evolves, innovative solutions like electric vehicles (EVs), electric aircraft, and eVTOL aircraft are gaining global traction. Permanent magnet machines, as the cornerstone of propulsion systems, play a pivotal role in achieving the high efficiency and reliability demanded by these emerging technologies.

Meeting the stringent requirements of E-mobility, especially in aviation where weight is a critical constraint, necessitates propulsion systems with high torque density, robust fault tolerance, high efficiency, and precise control accuracy. These attributes are essential for delivering reliable power and consistent performance under diverse and demanding conditions. Fault-tolerant electric motors are particularly vital, as they mitigate risks during potential failures, enhancing safety and operational dependability. Thermal modeling and cooling system optimization are key to maximizing output performance. Advancements in theoretical modeling and simulation methods are crucial to improve motor pre-design accuracy, ensuring alignment between design parameters and practical requirements. Additionally, some emerging technologies, such as artificial intelligence (AI), are further enhancing computational efficiency in design and optimization processes. By integrating AI, designers can achieve more accurate predictions and faster iterations, accelerating the development of next-generation electric motors tailored to E-mobility needs.

The future of electric propulsion depends on systems that balance high torque density with exceptional fault tolerance. To drive progress in this field, we invited submissions to the special session, "Development of Advanced Permanent Magnet Machines and Drives for E-Mobility." This session aims to provide a platform for researchers and practitioners to share cutting-edge advancements, address critical challenges, and explore new directions for E-mobility.

Technical Program ORAL SESSIONS

Monday, May 19 | 10:00 AM - 12:00 PM

Oral Session 1: Rotating Electric Machines 1

MAGNOLIA 1

Session Chairs:

Ayman EL-Refaie, Marquette University Ronghai Qu, Huazhong University of Science and Technology

10:00 AM | Design and Fabrication of a Ferrofluid-Gap Test Rig for Radial Flux Electrical Machines [#7031]

Fergus Hall², Alasdair McDonald², Markus Mueller², Mike Galbraith¹ ¹Fountain Design Ltd, United Kingdom; ²University of Edinburgh, United Kingdom

10:20 AM | Torque Enhancement of Electrically Excited Synchronous Machines by Cross Coupling Braking Torque Mitigation [#7083]

Tianzheng Xiao, Zi Qiang Zhu University of Sheffield, United Kingdom

10:40 AM | Investigation of a Variable Flux PMSM with

Mechanical Modulators Between the Rotor Poles [#7107] Gabriel Weissitsch, Thomas Krainer, Edmund Marth, Gerd Bramerdorfer, Markus Peer Johannes Kepler University Linz, Austria

11:00 AM | Characterization of a Variable Flux Machine with Mechanical Flux Modulators Above the Rotor Poles [#7110] Sarah Schinwald, Gabriel Weissitsch, Edmund Marth, Gerd Bramerdorfer, Thomas Krainer Johannes Kepler University Linz, Austria

11:20 AM | Speed Range Extension for E-Core Outer-Rotor Flux-Switching Permanent Magnet Machines Through Winding Reconfiguration [#7121]

Zhiyuan Xu², Ming Cheng², Hang Yin², Honghui Wen¹, Ying Fan² ¹Hunan University, China; ²Southeast University, China

11:40 AM | Influence of Stator Core on the Vibration Behavior of Permanent Magnet Machines with Hairpin Winding [#7138] Zhongze Wu, Erfang Fu, Jinwen Du, Wentao Zhang, Wei Hua Southeast University, China

Oral Session 2: Electric Drives 1

MAGNOLIA 2

Session Chairs: Nick Baker, Newcastle University Xu Deng, Newcastle University

10:00 AM | Quantitative Analysis of the Torque-Speed Curve for a Flat Wire Permanent Magnet Machine Drive System [#7108] Zhongze Wu, Xueyi Yan, Zhimian Wang, Wentao Zhang, Wei Hua Southeast University, China

10:20 AM | Extended SVM for Dual Inverter Fed Adjustable Field Permanent Magnet Synchronous Motor Using

Zero-Sequence Current [#7139] Kiyohiro Iwama, Yutaro Hiyoshi, Toshihiko Noguchi Shizuoka University, Japan

10:40 AM | Elimination of Current and Position Sensors in Adjustable Speed SRM Drives [#7061] Vahid Rafiei, Babak Fahimi

University of Texas at Dallas, United States

11:00 AM | Reinforcement Learning Control of Three-Level Converter Permanent Magnet Synchronous Machine Drives [#7100]

Mario Peña¹, Maximilian Schenke¹, Darius Jakobeit¹, Barnabas Haucke-Korber¹, Oliver Wallscheid² ¹Universität Paderborn, Germany; ²Universität Siegen, Germany

11:20 AM | Modeling of High-Frequency Common-Mode Impedances for Hairpin Winding Machines [#7111] Hans-Georg Kneidinger, Annette Muetze *Graz University of Technology, Austria*

11:40 AM | Reinforcement Learning-Based Current Controller for Switched Reluctance Motor Drives [#7113]

Gustavo Xavier Prestes¹, William K. Moreira¹, Filipe P. Scalcon², Cassiano Rech¹, Andrew M. Knight², Rodrigo P. Vieira¹ ¹Universidade Federal de Santa Maria, Brazil; ²University of Calgary, Canada

Oral Session 3: Special Machines, Electromagnetic Actuators & Sensors 1

MAGNOLIA 3

Session Chairs: Le Chang, *General Motors* Alireza Fatemi, *General Motors*

10:00 AM | A Negative Stiffness Double-Helical Torsional Magnetic Spring for a Wave Energy Converter [#7273]

Payam Emami², Jonathan Bird², Dawei Che², Bertrand Dechant¹ ¹FluxMagic, Inc., United States; ²Portland State University, United States

10:20 AM | Investigation of High-Performance Direct-Drive Vernier Motors with Various Permanent Magnet Configurations [#7032]

Jingwei Zhu¹, Huanzhi Wang¹, Yiming Shen¹, Kailiang Yu¹, Hiroshi Yamamoto², Ryo Kajitani², Christopher Ho Tin Lee¹ ¹Nanyang Technological University, Singapore; ²Panasonic Industry Co., Ltd., Japan

10:40 AM | Concept for the Production of Perforated and Endless Paper-Based Slot Insulation for Use in Rail-Bound Traction [#7033]

Alexander Vogel, Felix Wirthmann, Steffen Fritsch, Marcel Baader, Jörg Franke, Florian Risch Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

11:00 AM | A Novel High-Torque-Density Permanent Magnets Vernier Machine with Enhanced Flux Modulation Effect and Armature MMF [#7098]

Yuwei Zhang, Li Fang, Dawei Li, Yu Zhao, Ronghai Qu, Wenwen Guo

Huazhong University of Science and Technology, China

11:20 AM | Rotor Winding Analysis for Superconducting Electrically Excited Synchronous Machines [#7283]

Lorenzo Perilli¹, Ines Santos Perdigao Peixoto¹, Federica Graffeo¹, Joao Felipe Pereira Fernandes², Alberto Tenconi¹, Silvio Vaschetto¹

¹Politecnico di Torino, Italy; ²University of Lisbon, Portugal

11:40 AM | Asymmetric PM Loss Suppression of Consequent Pole PM Vernier Machine by Iron Pole Shaping Methods [#7117]

Yinzhao Zheng, Dawei Liang, Zi Qiang Zhu University of Sheffield, United Kingdom

Oral Session 4: Thermal, Materials & Efficiency Challenges 1

MAGNOLIA 4

Session Chairs:

Matthew Gardner, University of Texas at Dallas Mona Ghassemi, University of Texas at Dallas

10:00 AM | The Tensile Strength of Neodymium Iron Boron Magnets: Weibull Analysis and the Implications for PM Motor Design [#7050]

David Giles, Xu Deng, Barrie Mecrow Newcastle University, United Kingdom

10:20 AM | Compatibility Study of Water-Based Lubricants and Insulation Systems in Low-Voltage Electrical Machines for Automotive Applications [#7088]

Hujun Peng², Jingning Wu², Hakim El Bahi¹, Catherine Charrin¹, Andreas Thul², Kay Hameyer², Simon Steentjes² ¹Centre de Recherche Solaize, TotalEnergies, France; ²RWTH Aachen University, Germany

10:40 AM | Reducing Calorimetric Loss Measurement Time for Electric Machines Through Optimized Operating Point Sequencing [#7137]

Jasper Nonneman¹, Ilya T'Jollyn², Jeroen De Kooning¹, Michel De Paepe¹ ¹Ghent University, Belgium; ²University of Antwerp, Belgium

11:00 AM | Development and Analysis of a Novel Electric Motor Rotor Shaft Cooling System [#7160]

Steven Vanhee², Jaywant Pawar¹, Frederik Desmet¹, Jasper Nonneman², Michel De Paepe² ¹Dana Incorporated, Belgium; ¹Dana Incorporated, India; ²Ghent University, Belgium

11:20 AM | Comprehensive Overview of Using Additive Manufacturing for Multiphysics Performance Improvement of Electric Machines [#7183]

Ali Zarghani, Peter Sergeant, Mohamed N. Ibrahim Ghent University, Belgium

11:40 AM | Impact of Lamination Punching on Electromagnetic Performances & NVH Behavior of PMSM: A Comprehensive Study [#7189]

Farid Zidat, Lavanya Vadamodala, Philippe Wendling Altair Engineering, United States

Monday, May 19 | 1:30 PM – 3:30 PM

Oral Session 5: Design Optimization, Modeling & Simulation 1

MAGNOLIA 1

Session Chairs: Hailing Huang, University of Nottingham Mehmet Kulan, Newcastle University

1:30 PM | A Comparative Study of Meta-Modeling Approaches for IPMSM Performance Prediction with Neural Networks [#7043] Mitja Garmut³, Simon Steentjes², Martin Petrun¹

¹FERI UM, Slovenia; ²RWTH Aachen University, Germany; ³University of Maribor, Slovenia

1:50 PM | Universal Modeling Methods of Induction Machines to Study the Influence of Rotor Existence on Terminal Overvoltages During Inverter-Fed Operation [#7096] Hujun Peng, Yue Yu, Simon Steentjes

RWTH Aachen University, Germany

2:10 PM | Modeling and Optimization of Self-Pumping Air-Cooled Thermal Management System for a High Specific Power Outer Runner Electric Motor [#7134]

Jianqiao Xiao¹, Kevin Uvodich¹, Chengzhang Fu², Eungi Youn³, Finnley Ryan³, Anjana Jayasanka Samarakoon³, Kiruba Haran³ ¹Hinetics Inc., United States; ²Indiana University Bloomington, United States; ³University of Illinois Urbana Champaign, United States

2:30 PM | Simple Design Optimization and Rated Slip Identification of Radial-Flux and Axial-Flux Induction Motors Based on Finite Element Analysis [#7158]

Gustavo Pérez-Guirriman¹, Carlos Madariaga-Cifuentes¹, Cesar Gallardo², Felipe Santacruz¹, Juan A. Tapia Ladino¹ ¹Universidad de Concepción, Chile; ²University of Nottingham, United Kingdom

2:50 PM | Design and Construction of a Fault-Tolerant Yokeless and Segmented Armature Axial Flux Motor for Aerospace Actuator Applications [#7164] Mehmet Kulan, Nick Baker Newcastle University, United Kingdom

3:10 PM | Design of Electric Machines Operating in Heavy Saturation Using a Hybrid Magnetostatic Method of Moments [#7194]

Carlos Castillo², Steven Pekarek², Daniel Horvath¹ ¹P. C. Krause and Associates, United States; ²Purdue University, United States

Oral Session 6: Condition Monitoring, Fault Diagnosis & Prognosis 1

MAGNOLIA 2

Session Chairs:

Ahmed Syed Ahmed, *Rockwell Automation* Yogesh Patel, *Rockwell Automation*

1:30 PM | Nonlinear Control of Buck-Type Converters for

Micro-Wind Generators [#7163] Noah Wilding, Shuzan Kumar Sarkar, Shruti Pandey, Michael L. McIntyre University of Louisville, United States

1:50 PM | Modular and Compact Neural Network Framework for Internal Fault Detection in Generators Using Current Signature Data [#7011]

Sergio Avila¹, Rafael Noboro Tominaga³, Rodolfo Rocha², Maurício B. C. Salles³, Bruno Carmo³, Renato Monaro³ ¹Federal Institute of Santa Catarina, Brazil; ²Federal University of Mato Grosso, Brazil; ³Universidade de São Paulo, Brazil

2:10 PM | Experimental Analysis of Negative-Sequence Currents Due to InterTurn Faults in the Stator of a DFIG for Protection and Diagnostic Purposes [#7012]

Sergio Avila¹, Rafael Noboro Tominaga³, Rodolfo Rocha², Renato Monaro³, Maurício B. C. Salles³, Bruno Carmo³ ¹Federal Institute of Santa Catarina, Brazil; ²Federal University of Mato Grosso, Brazil; ³Universidade de São Paulo, Brazil

2:30 PM | Unsupervised Anomaly Detection for Industrial Data Using Generative Adversarial Networks [#7014]

Michel Lehmann, Andreas Möckel Technische Universität Ilmenau, Germany

2:50 PM | Map-Based Behavior of a Dual Three Phase Machine Under Inter-Turn Short Circuit Faults [#7020]

Daniel Walch¹, Yves Burkhardt², Maximilian Hofmann¹ ¹Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany; ²Technische Universität Darmstadt, Germany

3:10 PM | Electric Motor Drive Anomaly Detection Using AutoGluon [#7023]

Xiaoqi Wang, Lizon Maharjan, Tausif Husain Amazon PrimeAir, United States

Oral Session 7: Transportation Applications 1

MAGNOLIA 3

Session Chairs: Baoyun Ge, Georgia Institute of Technology Yaser Chulaee. Lennox International Inc.

1:30 PM | High-Frequency Modeling of Surge Voltage Mitigation in Long-Cable-Fed PMSM-Drive System with Adaptive Impedance Coils [#7323]

Mohamed Metwly¹, Jiangbiao He¹, Majid T. Fard² ¹University of Tennessee, Knoxville, United States; ²GE Aerospace, United States;

1:50 PM | Implementing Electrical Steel Properties in Excess Loss Modelling of Reduced Critical Rare Earth Electric Traction Machines [#7035]

Jan Rens², Sigrid Jacobs¹ ¹ArcelorMittal Global R&D, Belgium; ²ArcelorMittal Global R&D Gent, Belgium

2:10 PM | Analysis of Startup Characteristics of Single-Phase Wound-Brushless Exciters Using Analytical Modeling for Aircraft Integrated Starter Generator [#7029]

Thanh-Tuan Nguyen, Sarbajit Paul, Hyeongjin Kim, Jaebeom Kang, Jiheon Lee, Jiyoung Lee Korea Electrotechnology Research Institute, Korea

2:30 PM | Model Compensation-Based Active Disturbance Rejection Control of Brushless Dual-Electrical-Port Dual-Mechanical-Port Machine [#7042]

Hui Wu, Shuangxia Niu, Mingyuan Jiang, Wei Liu, Kwok-Tong Chau Hong Kong Polytechnic University, Hong Kong

2:50 PM | Inset Permanent Magnet Machine for Direct Wheel Drive Applications [#7067]

Sreeju Sreedharan Nair, Piyush Chauhan TVS Motor Company, India

3:10 PM | Optimal System Excitation of a Permanent Magnet Synchronous Motor Using Differentiable Model Predictive Excitation [#7037]

Hendrik Vater¹, Mario Peña¹, Oliver Wallscheid² ¹Universität Paderborn, Germany; ²Universität Siegen, Germany

Oral Session 8: Energy & Grid-Connected Applications 1

MAGNOLIA 4

Session Chairs:

Paolo Pescetto, *Politecnico di Torino* Eric Severson, *University of Minnesota*

1:30 PM | Manufacturing of Flux Modulators for Mass-Optimized Concentric Magnetic Gearing [#7038]

Justin J. Scheidler³, Thomas F. Tallerico³, Kyle R. Whitling¹, Aaron D. Anderson³, Jonathan J. Veneziano³, Zachary A. Cameron² ¹HX5, LLC, United States; ²NASA Goddard Space Flight Center, United States; ³NASA John H. Glenn Research Center at Lewis Field, United States

1:50 PM | Optimized Control Approach for PMSM-Driven Solar Water Pumping with Improved Stability and Dynamic Response [#7146]

Jieun Jung, Goeun Jeon, Kahyun Lee Ewha Womans University, Korea

2:10 PM | Evaluation of Root Cause of Hot-Spot Temperatures Using Full-Size Series-Connection Mock-Up Models of Turbine Generators [#7182]

Kenichi Hattori¹, Kazuhiko Takahashi¹, Kenji Nakamura² ¹Mitsubishi Generator CO, LTD., Japan; ²Tohoku University, Japan

2:30 PM | Systematic Design Approach for Dual-Pole Line Start Permanent Magnet Synchronous Motors [#7211]

Farhad Mahdavi², Aliakbar Damaki Aliabad², Ebrahim Amiri¹ ¹California State University, Long Beach, United States; ²Yazd University, Iran

2:50 PM | Effect of the Main-to-Auxiliary Winding Turn Ratio in Single-Phase Dual-Pole Line Start Permanent Magnet Synchronous Motor [#7212]

Fakhrossadat Ghoroghchian², Yi Du², Ebrahim Amiri¹ ¹California State University, Long Beach, United States; ²Jiangsu University, China

3:10 PM | Design and Optimization of a Novel 15-Phase Redundant Flux-Switching Permanent Magnet Machine for Wind Power Generation [#7274]

Pirat Khunkitti¹, Pattasad Seangwong¹, Chainattapol Nissayan¹, Nuwantha Fernando², Apirat Siritaratiwat¹ ¹Khon Kaen University, Thailand; ²Royal Melbourne Institute of Technology, Australia

Tuesday, May 20 | 10:00 AM - 12:00 PM

Oral Session 9: Rotating Electric Machines 2

MAGNOLIA 1

Session Chairs: Peter Sergeant, Ghent University Peng Han, Ansys Inc.

10:00 AM | Bridgeless Rotor Synchronous Reluctance Machine Design Evaluation [#7149]

Miika Parviainen, Charles Nutakor, Arash Allahyari, Iikka Martikainen, Ilkka Poutiainen, Jussi Sopanen, Ilya Petrov, Juha Pyrhönen LUT University, Finland

10:20 AM | Design of a Magnetically-Geared Actuator for Extremely Cold and Dusty Space Environments [#7039]

Justin J. Scheidler², Aaron D. Anderson², Thomas F. Tallerico², Peter Hoge¹, George Harpster¹, Kyle R. Whitling¹, Jesse Hawk¹, Malcolm Robbie¹

¹HX5, LLC, United States; ²NASA John H. Glenn Research Center at Lewis Field, United States

10:40 AM | Improving Torque Density Through Leakage Reduction in IPM Machines for High Performance Applications [#7200] Md Sariful Islam, Mohammad Islam

HL Mechatronics, United States

11:00 AM | Torque Ripple Reduction of an Axial-Flux Permanent Magnet Motor with Distributed Winding [#7201]

Junichi Asama², Tomoki Sugita², Wataru Kitagawa¹ ¹Nagoya Institute of Technology, Japan; ²Shizuoka University, Japan

11:20 AM | Reduction of Torque Ripples in Double Stator Wound Field Flux Switching Motor by Rotor Shaping and Tilting of Stator Magnetic Axis [#7226]

Hillary Idoko, Udochukwu Akuru, Olawale Popoola Tshwane University of Technology, South Africa

11:40 AM | A Novel Variable-Flux Permanent Magnet Machine with Multiple Winding Switching Modules [#7309]

Hui Yang², Zhengnan Xie², Cheng Qian², Yiming Shen¹, Shuhua Fang², Heyun Lin² ¹Nanyang Technological University, Singapore; ²Southeast University, China

Oral Session 10: Electric Drives 2

MAGNOLIA 2

Session Chairs:

Yaser Chulaee, Lennox International Inc. Jingwei Zhu, Nanyang Technological University

10:00 AM | Multi-Frequency Current Harmonics Suppression of Dual Three-Phase PMSM Drives Considering Non-Ideal Factors [#7120]

Kailiang Yu, Chenhao Zhao, Huanzhi Wang, Yiming Shen, Jingwei Zhu, Christopher Ho Tin Lee Nanyang Technological University, Singapore

10:20 AM | Differentiable Predictive Control of Permanent Magnet Synchronous Motors [#7126]

Ali Abdelwanis², Felix Berkel¹, Jan Achterhold¹, Mohammad Abu-Ali¹, Joshua Adamek², Sergio Lucia² ¹Corporate Research of Robert Bosch GmbH, Germany; ²Technische Universität Dortmund, Germany

10:40 AM | A Deep Reinforcement Learning-Based Direct Switching Controller Design for Permanent Magnet Synchronous Motors [#7128]

Mohammad Abu-Ali¹, Felix Berkel¹, Maximilian Manderla¹, Daniel Görges²

¹Corporate Research of Robert Bosch GmbH, Germany; ²Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Germany

11:00 AM | Rotor Speed Determination of Induction Machines Using End Ring Leakage Flux Measurement [#7143]

Nico Remus², Oliver Meixner², Thomas Schuhmann¹, Uwe Schuffenhauer¹, Arne Brix² ¹Dresden University of Applied Sciences, Germany; ²IAV GmbH, Germany

11:20 AM | Data-Driven Multi-Objective Optimization-Based Excitation Selection Method for an Enhanced Control of a Variable Flux Reluctance Machine [#7188]

Göksenin Hande Bayazıt, Doğa Ceylan, Esin Ilhan Caarls, Elena Lomonova

Eindhoven University of Technology, Netherlands

11:40 AM | Investigation on Noise and Vibration of Rare-Earth Free High-Speed Carbon Composite Wrapped IPM [#7223]

Md Rashedur Rahman, Seungdeog Choi Mississippi State University, United States

Oral Session 11: Special Machines, Electromagnetic Actuators & Sensors 2

MAGNOLIA 3

Session Chairs: Yilmaz Sozer, University of Akron Bilal Akin, University of Texas at Dallas

10:00 AM | An Inverse Modeling Approach for Thermal

Properties Estimation in Multi-Layer PMLSMs [#7115] Gan Fu, Mitrofan Curti, Calina Ciuhu, Elena Lomonova *Eindhoven University of Technology, Netherlands*

10:20 AM | Torque Density Enhancement of Magnetic Worm-Geared Motor with Half Skew Structure by Introducing Curved Tooth Shape [#7044]

Haruki Yamanaka, Yukio Tsutsui, Akira Chiba, Kyohei Kiyota, Yusuke Fujii, Mitsuru Endo Institute of Science Tokyo, Japan

10:40 AM | Anodised Aluminium Foil Windings for Sustainable YASA Axial Flux Machines [#7021]

Ludovic De Decker, Peter Sergeant, Hendrik Vansompel Ghent University, Belgium

11:00 AM | A Novel Axial-Flux Permanent Magent Vernier Machine with H-Core Stators and Heat Pipes for Electric Aircraft Propulsion System [#7239]

Yanlei Yu², Feng Chai¹, Yulong Pei¹, Yiming Shen², Jingwei Zhu², Christopher Ho Tin Lee² ¹Harbin Institute of Technology, China; ²Nanyang Technological University, Singapore

11:20 AM | Hybrid Time-Invariant and Time-Variant Linear Motion Control of a Levitating Platform [#7286]

Andrei Zhuravlev¹, Viktor Dodonov¹, Sadjad Madanzadeh¹, Atte Putkonen¹, Leonid Chechurin¹, Rafal Jastrzebski² ¹LUT University, Finland; ²University of Turku, Finland

11:40 AM | Characterization-Based Modelling and Control

of a Two-Degrees-of-Freedom Axial Flux Machine [#7075] Matthew Bagnara¹, David Klink¹, Greg Heins², Behrooz Bahrani¹ ¹Monash University, Australia; ²Regal Rexnord, Australia

Oral Session 12: Thermal, Materials & Efficiency Challenges 2

MAGNOLIA 4

Session Chairs: Vandana Rallabandi, *Oak Ridge National Lab* Alireza Fatemi, *General Motors*

10:00 AM | Thermal Modeling of a High-Speed Solid Rotor

Induction Machine with Forced Air-Cooling System [#7213] Tokzhan Toleukaiyr¹, Felipe Ortiz-Bustos¹, Aki Grönman¹, Pia Lindh¹, Teemu Turunen-Saaresti¹, Janne Nerg¹, Michele Degano² ¹LUT University, Finland; ²University of Nottingham, United Kingdom

10:20 AM | Impact of Multilevel Inverter Supply on Losses in Permanent Magnet Synchronous Machines Considering High-Frequency Current Components [#7231]

Mostafa Fereydoonian, Ali Halawa, Avinash Dornala, Woongkul Lee Purdue University, United States

10:40 AM | Design and Quantitative Analysis of Dual Permanent Magnet Linear Machine with Reduced Rare-Earth PM Usage [#7277]

Yiming Shen¹, Jingwei Zhu¹, Yanlei Yu¹, Kailiang Yu¹, Qinfen Lu², Christopher Ho Tin Lee¹ ¹Nanyang Technological University, Singapore; ²Zhejiang University, China

11:00 AM | An Analytical Model for the AC Copper Losses in the Flat-Wire Motors [#7278]

Lutong Hou³, Qirong Jiang³, Chengcheng Liu¹, Jing Pang² ¹Hebei University of Technology, China; ²Qingdao Yunlu Advanced Materials Technology Co., Ltd., China; ³Tsinghua University, China

11:20 AM | Segmented Stators Offering Improved Thermal Performance and the Potential for Greater Power Density [#7281]

Luke Saunders, Glynn Atkinson, Yusuf Ugurluoglu Newcastle University, United Kingdom

11:40 AM | Topology Optimization of Carbon-Taped Internal Permanent Magnet Machine with Non-Linear Mechanics Consideration [#7045]

Nicolas Abdelnour¹, Olivier Brun¹, Thomas Lehmann¹, Helmut Schmid², Lavanya Vadamodala¹

¹Altair Engineering, France; ¹Altair Engineering, Germany; ¹Altair Engineering, United States; ²ZF Motor, Germany

Wednesday, May 21 | 8:00 AM - 10:00 AM

Oral Session 13: Design Optimization, Modeling & Simulation 2

MAGNOLIA 1

Session Chairs: Farid Zidat, *Altair Engineering*

Caleb Li, Toshiba International R&D

8:00 AM | Performance Evaluation of Aluminum and Copper Windings in Electrically Excited Synchronous Machines Considering Drive Cycle Efficiency and Maximum Continuous Power [#7233]

Andreas Gneiting, Felix Burkard, Nejila Parspour Universität Stuttgart, Germany

8:20 AM | Hybrid FEA and Meta-Modeling for DE Optimization of a Highly Saturated Spoke IPM [#7260]

Oluwaseun A. Badewa², Marcelo D. Silva³, Rosemary E. Alden², Pedram Asef¹, Dan M. Ionel² ¹e-Motion Laboratory, Advanced Propulsion Laboratory, University College London, United Kingdom; ²SPARK Lab, University of Kentucky, United States; ³Uppsala University, Sweden

8:40 AM | Optimization of the Tooth Geometry for Axial Flux Machine with Non-Grain Oriented and Grain Oriented Electrical Steel [#7264]

Cristian Demian², Abdenour Abdelli¹, Jean-Philippe Lecointe², Gianluca Zito¹

¹IFP Energies Nouvelles, France; ²Laboratoire Systèmes Électrotechniques et Environnement, Université d'Artois, France

9:00 AM | Non-Circulating Bearing Currents in Drum-Winding Machine: Threat Level and Role of End Windings [#7270]

Konstantin Vostrov, Ilya Petrov, Shruti Singh, Juha Pyrhönen LUT University, Finland

9:20 AM | Assessment and Mitigation of Non-Circulating Bearing Currents in Bridgeless Rotor Synchronous Reluctance Machine [#7279]

Konstantin Vostrov, Charles Nutakor, Miika Parviainen, Pia Lindh, Juha Pyrhönen, Jussi Sopanen LUT University, Finland

9:40 AM | Lateral Rotor Vibrations in Six-Phase Induction Machine Drives [#7292]

Nirangkush Das¹, Muhammad Numan³, Firdausa Ahmed¹, Bilal Mustafa¹, Ahmed Hemeida¹, Niko Nevaranta³, Marko Hinkkanen¹, Timo Holopainen² ¹Aalto University, Finland; ²ABB Oy, Finland; ³LUT University, Finland

Oral Session 14: Condition Monitoring, Fault Diagnosis & Prognosis 2

MAGNOLIA 2

Session Chairs: Seungdeog Choi, *Mississippi State University* Ahmed Syed Ahmed, *Rockwell Automation*

8:00 AM | An End-User Perspective on AC Induction Motor Testing Before, During, and After Repair [#7070] Henk de Swardt Timken Power Systems, United States

8:20 AM | Synchronous Generator Sub-Transient Reactance Estimation Through Harmonic Measurements [#7124] Lukas Malfait, Colin Debruyne, Jos Knockaert, Jan Desmet Ghent University, Belgium

8:40 AM | Analysis of High-Frequency Current for Comprehensive Winding Insulation Degradation Detection of Railway Propulsion Motors [#7144]

Eduardo Rodriguez Montero², Markus Vogelsberger¹, Thomas Wolbank² ¹ALSTOM Transport Austria GmbH, Austria; ²Technische Universität Wien, Austria

9:00 AM | Sensitivity Analysis of Multiphase Induction Machine Parameter Identification Methods [#7173]

Omer Ikram Ul Haq¹, Rahul Kanchan¹, Sjoerd Bosga¹, Luca Peretti² ¹ABB Ab. Corporate Research Center, Sweden; ²KTH Royal Institute of Technology, Sweden

9:20 AM | Motor Fault Detection with a Hybrid Physics-Based and Data-Driven Method [#7284]

Dai-Yan Ji³, Bingnan Wang², Hiroshi Inoue¹, Makoto Kanemaru¹ ¹Mitsubishi Electric Corporation, Japan; ²Mitsubishi Electric Research Laboratories, United States; ³University of Maryland, United States

9:40 AM | PMSM Modelling Considering Magnetic Saturation, Spatial Harmonics, and Interturn Short-Circuit Faults [#7290]

Geoffrey Postal², Frederik De Belie¹, Johan Gyselinck² ¹Ghent University – Flanders Make, Belgium; ²Université Libre de Bruxelles, Belgium

Oral Session 15: Transportation Applications 2

MAGNOLIA 3

Session Chairs: Andy Knight, University of Calgary Lei Zhou, University of Wisconsin-Madison

8:00 AM | Retrofitting of a Chevy-Bolt IPM Motor with a PM-Assisted Synchronous Reluctance Rotor Enabled with a Blend of Heavy-Rare-Earth-Free Neodymium and Ferrite Magnets [#7142] Praveen Kumar, Ali Al-Qarni, Robin Wilson, Ayman EL-Refaie Marguette University, United States

8:20 AM | Quality Monitoring in Laser Welding of Rectangular **Copper Wires for Traction Drives Using a Broadband Process** Light Sensor [#7150]

Marcel Baader, Tim Raffin, Florian Risch, Jörg Franke Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

8:40 AM | A Family of Phase-Unit Axial-Modular Permanent Magnet Vernier Machines for Electric Aircraft Hovering Propulsion System [#7151]

Yanlei Yu³, Feng Chai², Xin Yuan⁴, Qingxiang Liu³, Josep Pou¹, Christopher Ho Tin Lee³ ¹City University of Hong Kong, Hong Kong; ²Harbin Institute of Technology, China; ³Nanyang Technological University, Singapore; ⁴University of Aberdeen, United Kingdom

9:00 AM | Battery Temperature-Aware EV Drivetrain Energy Management System [#7015]

Faris AtaAllah¹, Shayok Mukhopadhyay², Habibur Rehman¹ ¹American University of Sharjah, U.A.E.; ²University of New Haven, United States

9:20 AM | Analysis of the Impact of Multi-Sector Unbalanced **Torgue Distribution on Electromagnetic Vibration and Noise in** In-Wheel Motors [#7172]

Hang Yin¹, Shuangxia Niu¹, Wei Hua², Hengliang Zhang², Kaining Qu², Min Li³ ¹Hong Kong Polytechnic University, Hong Kong;

²Southeast University, China; ³Zhejiang Founder Motor Company Limited, China

Oral Session 16: Special Machines, Electromagnetic Actuators & Sensors 3

MAGNOLIA 4

Session Chairs:

Michael Mcintvre. University of Louisville Baoyun Ge, Georgia Institute of Technology

8:00 AM | 10 MW Direct-Drive Superconducting Vernier

Machines for Offshore Wind Power Application [#7090] Jian Ye, Guang-Jin Li University of Sheffield, United Kingdom

8:20 AM | Suspension Force Ripple Reduction Control of a Magnetically Levitated Axial Gap Bearingless Motor [#7119]

Nobuyuki Kurita¹, Junichi Asama², Victor Tedesco⁴, Ethan Maddin⁴, Yaxin Wang⁴, Iki Adachi³ ¹Baylor College of Medicine, United States; ²Shizuoka University, Japan; ³Texas Children's Hospital, United States; ⁴Texas Heart Institute, United States

8:40 AM | Modeling of Moving Rotor Elements for Machines with Speed-Dependent Flux Linkage [#7127]

Markus Peer, Gabriel Weissitsch, Edmund Marth, Gerd Bramerdorfer, Thomas Krainer, Martin Koll Johannes Kepler University Linz, Austria

9:00 AM | Sensorless Position Estimator for Active Magnetic Bearings Based on Non-Linear Voltage Equation and Square-Wave Voltage Injection [#7170]

Minyoung Choi, Daeyong Kim, Minkyun Noh Korea Advanced Institute of Science and Technology, Korea

9:20 AM | Design and Development of a Large Magnetic Gap Linear Generator for Wave Energy [#7208]

Nick Baker, Ehsan Farmahani, Farshid Mahmouditabar Newcastle University, United Kingdom

Wednesday, May 21 | 10:30 AM - 12:10 PM

Oral Session 17: Rotating Electric Machines 3

MAGNOLIA 1

Session Chairs: Mohammad S. Toulab, Oakland University Bojian Cao, Dana Incorporated

10:30 AM | Influence of Magnet Layout on Excitation **Requirements for Post Assembly Rotor Magnetization in PM Motors [#7310]**

Alireza Fatemi, Peng Peng General Motors. United States

10:50 AM | Filter Based Motor Control for Robotic Applications [#7154]

Shuzan Kumar Sarkar, Noah Wilding, Shruti Pandey, Nicholas Hawkins, Michael L. McIntyre University of Louisville, United States

11:10 AM | Optimal Design of Coreless Axial Flux PM Machines Using a Hybrid Machine Learning and Differential Evolution Method [#7326]

Matin Vatani³, David R. Stewart³, Pedram Asef¹, Dan M. Ionel² ¹e-Motion Laboratory, Advanced Propulsion Laboratory, University College London, United States; ²SPARK Lab, University of Kentucky, United States; ³University of Kentucky, United States

11:30 AM | Hardware Design Considerations for 30 kW, SiC Based High-Fundamental Frequency (2 kHz) Inverter for High-Speed Drives [#7155]

Deepak Upadhyay, Aleksi Mattsson, Pasi Peltoniemi LUT University, Finland

11:50 AM | Multiphase FSCWs with Flux Barrier Stator – A Novel Solution for High Torque Density Applications [#7010] Gurakug Dajaku

FEAAM GmbH, Germany

Oral Session 18: Electric Drives 3

MAGNOLIA 2

Session Chairs:

Doga Ceylan, *Eindhoven University of Technology* Shi-Uk Chung, *ANSYS Inc.*

10:30 AM | Precision Position Control of a Permanent Magnet Linear Synchronous Motor Using Advanced PID Control [#7002] Yong-Lin Kuo, Pin-Lin Cheng

National Taiwan University of Science and Technology, Taiwan

10:50 AM | Optimal Interleaved Phase-Disposition PWM for Paralleled Cascaded H-Bridge Inverters [#7253]

Hamid Hamza², Idéal Oscar Libouga¹, Fils Pascal Lingom², Joseph Song-Manguelle², Mamadou Lamine Doumbia² ¹Université de Douala, Canada; ²Université du Québec à Troisrivières, Canada

11:10 AM | A Unified Observer for Smooth Speed-Sensorless Drive Control of Induction Machines at Full Speed Range [#7304]

Jingjie Wu², Abraham Goldsmith¹, Lei Zhou², Dehong Liu¹,

Bingnan Wang¹, Yebin Wang¹ ¹Mitsubishi Electric Research Laboratories, United States;

²University of Wisconsin–Madison, United States

11:30 AM | Modular Design for Sensorless Control of

Synchronous Machine Drives with an LC Filter [#7306] Hannu Hartikainen, Marko Hinkkanen

Aalto University, Finland

11:50 AM | Forced Alignment-Based Motor Position Sensor Error Identification and Compensation Technique to Reduce Second Order Torque Ripple [#7140]

Yunjai Oh, Jaesang Park, Changwoo Shin, Jihyun Jung, Jinhwan Lee *HL Mando Corp., Korea*

Oral Session 19: Design Optimization, Modeling & Simulation 3

MAGNOLIA 3

Session Chairs: Andrea Cavagnino, Politecnico di Torino Dan M. Ionel, University of Kentucky

10:30 AM | A Physics-Informed Gaussian Process Regression-Based Meta Model for Rapid Characterization of Permanent Magnet Synchronous Machines [#7185]

Marcelo D. Silva³, Oluwaseun A. Badewa², Rosemary E. Alden², Pedram Asef¹, Dan M. Ionel², Sandra Eriksson³ ¹e-Motion Laboratory, Advanced Propulsion Laboratory, University College London, United Kingdom; ²SPARK Lab, University of Kentucky, United States; ³Uppsala University, Sweden

10:50 AM | Design Optimization of Nine-Phase Induction Motor for EV Traction Applications [#7322]

Mohamed Metwly¹, Reza Ilka¹, Hengchun Mao², Ron Ye², Jiangbiao He¹ ¹University of Tennessee, Knoxville, United States; ²Quanten Technologies, Inc, United States

11:10 AM | Meta-Heuristic Based Design and Optimization of Double Stator-Single Rotor Axial-Flux Induction Generator [#7025]

Bati Eren Ergun¹, Tugberk Ozmen², Arda Akyildiz¹, Bahaddin Goksun¹, Mehmet Onur Gulbahce¹ ¹Istanbul Technical University, Turkey; ²Manisa Celal Bayar University, Turkey

11:30 AM | Electromagnetic Modeling of Lattice Structures in Additively Manufactured Electric Machines [#7178]

Shi-Uk Chung¹, Peng Han¹, Nishanth Gadiyar², Eric Severson³, Alexander Goodall⁴, Pavani Gottipati¹, Mark Solveson¹ ¹Ansys, Inc., United States; ²Oak Ridge National Laboratory, United States; ³University of Minnesota, United States; ⁴University of Sheffield, United Kingdom

11:50 AM | Influence of PMSM Parameters on the Active Open- vs Short-Circuit Fault-Reaction Strategy [#7203] Simone Ferrari, Paolo Pescetto, Gianmario Pellegrino *Politecnico di Torino, Italy*

Oral Session 20: Transportation Applications 3

MAGNOLIA 4

Session Chairs: Ebrahim Amiri, *California State University* Matthew Gardner, *University of Texas at Dallas*

10:30 AM | Experimental Parameter Analysis for the Induction Based Thermal Demagnetization of PM Rotors from Electric Traction Drives [#7234]

Roman Hahn, Thorsten Ihne, Marcel Baader, Jörg Franke, Alexander Kühl, Florian Risch Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

10:50 AM | Neural Network Meta-Model Method for

Performance Prediction of Axial Flux Machines [#7285] Hailin Huang², Tianjie Zou², Adam Walker², Xiang Ren², George Batho², Peter H. Connor², Liam Portanier Mifsud², Oliver Tweedy², Christopher Gerada², Alin Stirban¹ ¹Robert Bosch GmbH, United Kingdom; ²University of Nottingham, United Kingdom

11:10 AM | High Performance Rare-Earth Free Interior Permanent Magnet Motor Enabled by Carbon Fiber Sleeve and Iron Nitride Magnets [#7325]

Ali Al-Qarni¹, James Alexander², Ayman EL-Refaie¹ ¹Marquette University, United States; ²Spartan Design LLC, United States

11:30 AM | A Dual Three-Plus-Two Phases Synchronous Reluctance Motor for Electric Traction Applications [#7287] Roberto Moncada, Alvaro Hoffer, Felipe Alarcón, Camilo Maury Universidad de La Frontera, Chile

Technical Program POSTER SESSIONS

POSTER SESSION 1

Monday, May 19 | 5:30 PM - 7:00 PM

AZALEA BALLROOM

Session Chairs: Hailing Huang, University of Nottingham Yaser Chulaee, Lennox International Inc.

Rotating Electric Machines 4

#7018 | Motor Length Reduction of Outer Rotor Type SPM Motor by Magnet Overhang Structure with Three-Dimensional Flux Recovery

Fumiya Yoshimura¹, Yuki Hidaka² ¹Nagaoka University of Technology, Japan; ²Ritsumeikan University, Japan

#7030 | Torque Improvement with Trapezoidal Magnet Rotor for V-Shaped Interior Permanent Magnet Motors

Taketo Minami¹, Yuki Hidaka² ¹Nagaoka University of Technology, Japan; ²Ritsumeikan University, Japan

#7041 | Study on Higher Output Power Spoke-Type IPM Motor with Flask-Shaped Magnet

Ryonosuke Otsuka¹, Yuki Hidaka² ¹Nagaoka University of Technology, Japan; ²Ritsumeikan University, Japan

#7053 | Field-Oriented Design of Notching and Mechanical Stress Relieving Grooves for Rotors in Flat Wire Permanent Magnet Machines

Wentao Zhang, Zhongze Wu, Wei Hua Southeast University, China

#7232 | Axial Active Magnetic Bearing with Laminated Stators and Slit Rotor Disc Used in On-Board Machinery

Sadjad Madanzadeh, Kristóf Márton Szombati, Juuso Narsakka, Tuhin Choudhury, Jussi Sopanen, Tuomo Lindh, Juha Pyrhönen, Niko Nevaranta LUT University, Finland

Electric Drives 4

#7003 | Flux-Weakening Control of Dual Three-Phase PMSM Considering the Interaction Between the $\alpha\beta$ and xy Planes Within the VSD Frame

Guangxu Lu, Jianyong Su, Fengyang Liu, Guijie Yang Harbin Institute of Technology, China

#7004 | Discrete-Time PMSM Current Control Based on Current Measurement Error

Xin Yuan⁴, Junkai Wen², Jingwei Zhu³, Shuangchun Xie³, Xueping Li¹

¹Beijing Institute of Technology, China; ²Hong Kong Polytechnic University, Hong Kong; ³Nanyang Technological University, Singapore; ⁴University of Aberdeen, United Kingdom

#7007 | Offline Self-Commissioning Method to Estimate Direct & Quadrature Axes Inductance for IPM/SPM in Industrial Motor Drive Applications

Tensing Duraisingam, Bing Li, Ahmed Sayed-Ahmed Rockwell Automation, Inc., United States

#7026 | Development of an Active Front End Highly Efficient

and Large Capacity Medium Voltage Inverter Drive Mamun Mostafa, Vivek Gopinathan, Tetsuya Okamoto *TMEIC Corporation, Japan*

#7036 | Angle Dependent Current Control Algorithm for Electrical Motors

Stefan Haehnlein², Jan Philipp Degel², Christian Kloeffer², Martin Doppelbauer¹ ¹Karlsruhe Institute of Technology, Germany; ²University of Applied Sciences Offenburg, Germany

Special Machines, Electromagnetic Actuators & Sensors 4

#7048 | Magnetic Field Optimization of an Axial Flux Permanent Magnet Energy Harvester

Felix Möller¹, Lutz Göhler¹, Romano Härtel¹, Wilfried Hofmann² ¹Hochschule für Technik und Wirtschaft Dresden, Germany; ²Technische Universität Dresden, Germany

#7049 | A New Winding Design Method for High Pole Number, Bearingless Machines

Sumaira Ahmed, Dave Winterborne, Xu Deng, Barrie Mecrow Newcastle University, United Kingdom

#7054 | Analysis and Solution of Residual Force in Electromagnetic Actuators

lago José Ferreira, Ian Gabriel Silveira, Maurício B. C. Salles, Paulo Alberto Moraes Universidade de São Paulo, Brazil

#7058 | Partially Superconducting Induction Machine

Nicholas Storti, Emmanuel Agamloh Baylor University, United States

#7102 | Machine Learning Based ID Identification for Linear Synchronous Motor Driven Cart with Magnetic Field Signal

Brady Chyla, John Oh, Justin Huang, Ridha Chowdhury, Joe Bastulli, Daniel Hudetz, Yuija Cui, Yuhong Huang, Francisco Maturana, Meiling He Rockwell Automation, Inc., United States

#7184 | Influence of Magnetic Unbalance Pull Force on Rotor Trajectory Control in Oscillatory Motion Mechanism Using a Bearingless Motor

Yuya Shichi, Toshie Kikuchi, Masahide Ooshima Suwa University of Science, Japan

Thermal, Materials & Efficiency Challenges 3

#7084 | Hybrid Method of AC Copper Loss Calculation with Magnetic Equivalent Circuit and Analytical Method Considering Iron Core Saturation

Tianzheng Xiao, Zi Qiang Zhu University of Sheffield, United Kingdom

#7135 | Enhanced Design and Electromagnetic Analysis of Synchronous Reluctance Machines Using Multi-Material Additive Manufacturing

Siddique Akbar², Yitbarek Bekele², Aamir Ebrahimi³, Bernd Ponick¹

¹Leibniz University Hannover, Germany; ²Profluxx GmbH, Germany; ³Universität Bremen, Germany

#7147 | High-Frequency Harmonic Loss Location Verification Using Temperature Rise

Miroslav Lípa, Matias Tiihonen, Hannu Kärkkäinen, Janne Nerg, Lassi Aarniovuori LUT University, Finland

Design Optimization, Modeling & Simulation 4

#7027 | Multiobjective Optimization of Electrical Machines Using Probabilistic Surrogate Modeling with Limited Data

Nuo Chen¹, Christian Digel¹, Yiwei Wang², Martin Doppelbauer¹ ¹Karlsruhe Institute of Technology, Germany; ²University of Nottingham, United Kingdom

#7051 | Modelling and Measurement of Voltage Stress in Inverter-Fed Stator Phase Windings

Loic Cabrel Kaptoum Kuate², Abdenour Abdelli¹, François Balavoine², Stéphane Duchesne² ¹IFP Energies Nouvelles, France; ²Laboratoire Systèmes Électrotechniques et Environnement, Université d'Artois, France

#7069 | Extended State Space Model of a Permanent Magnet Synchronous Machine as Part of a Stator Sided Resonant Inverter

Jan Loos¹, Kerstin Siebert¹, Holger Hirsch² ¹Hochschule Ruhr West, Germany; ²Universität Duisburg-Essen, Germany

#7092 | Effect of Parasitic Capacitances in Drum-Winding Machine

Konstantin Vostrov, Shruti Singh, Ilya Petrov, Juha Pyrhönen LUT University, Finland

#7099 | Torque Density Improvement in an Axial Flux Permanent Magnet Machine with Trapezoidal Cross-Section Rotor and Dual Three-Phase Windings

Felipe Ortiz-Bustos¹, Cesar Gallardo³, Carlos Madariaga-Cifuentes², Juan A. Tapia Ladino², Pia Lindh¹, Michele Degano³ ¹LUT University, Finland; ²Universidad de Concepción, Chile; ³University of Nottingham, United Kingdom

#7106 | Motor Noise and Vibration Simulation Accuracy Improvement via Modal Parameter Tuning

Shi-Uk Chung, James Packer, Peng Han, Pavani Gottipati Ansys, Inc., United States; Ansys, Inc., United Kingdom

Condition Monitoring, Fault Diagnosis & Prognosis 3

#7013 | Improvements in Stacking Deep Learning Models for Current and Vibration Signature Analysis in Rotating Machines

Sergio Avila¹, Rafael Noboro Tominaga², Gabriel Ferri¹, Bruno Carmo², Renato Monaro², Maurício B. C. Salles² ¹Federal Institute of Santa Catarina, Brazil; ²Universidade de São Paulo, Brazil

#7022 | Adaptive Piecewise Linear Function and Deep Learning for Remaining Useful Life Estimation

Erin Lee, Tanya Chaudhary, Trupti Chavan, Akshay Kakkar, Viraj E, Deepak Mittal, Don Williams, Derek Snaidauf, Edward Bowen, Sunil Reddy Tiyyagura Deloitte, United States; Deloitte, India

#7059 | Implementation and Experimental Evaluation of Stator Coil Insulation State of Health Measurement Techniques Under SiC Switching Operation

Benjamin Sirizzotti, Emmanuel Agamloh, Annette von Jouanne, Alex Yokochi

Baylor University, United States

#7062 | Comparative Analysis of Modeling Methods for High-Frequency Phenomena and Simulations of Bearing Currents in Induction Motors

Vinícius Carmo¹, Marco Túlio Alves Êvo¹, Diogo Souza¹, José Carlos Leão Veloso Silva², Hélder de Paula¹ ¹Federal University of Uberlândia, Brazil; ²Petrobrás Petróleo Brasileiro S.A., Brazil

#7081 | Inverter-Induced Bearing Currents: Analysis for Journal Bearings

André M. Alzamora¹, Celso Azevedo Júnior¹, José Carlos Leão Veloso Silva², Jurandir Antônio Gomes Da Silva², Hélder de Paula¹

¹Federal University of Uberlândia, Brazil; ²Petrobrás Petróleo Brasileiro S.A., Brazil

Transportation Applications 4

#7060 | Loss Analysis of Space-Vector and Discontinuous Pulse Width Modulation for an EESM with Dynamic Motor Drive

Benjamin Wolk, Li-Chun Chien Tula Technology, Inc, United States

#7066 | Comparative Analysis of Hairpin and Litz Wire Windings in High-Efficiency Electric Vehicle Motors

Richard Hohlfeld¹, Berthold Schlecht² ¹Mercedes-Benz AG, Germany; ²Technische Universität Dresden, Germany

#7077 | Consideration of a Conductor Configuration of a High-Speed SRM for Automobile Tractions to Reduce its AC Copper Loss

Wenyi Xu¹, Kyohei Kiyota¹, Akira Chiba¹, Jun-Ichi Deguchi² ¹Institute of Science Tokyo, Japan; ²Toyota Motor Corporation, Japan

#7219 | Optimized Recycling Strategy for Permanent Magnet Drives of Electric Vehicles with Focus on Rare Earth Magnet Extraction

Thorsten Ihne, Roman Hahn, Fabian Giesbert, Marcel Baader, Jörg Franke, Florian Risch

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

#7221 | Connected C-Core Hybrid SRMs for EV Applications

Gholamreza Davarpanah¹, Sajjad Mohammadiyangijeh² ¹Amirkabir University of Technology, Iran; ²Massachusetts Institute of Technology, United States

Energy & Grid-Connected Applications 2

#7034 | Coordinated Control of a Cluster of Advanced Microgrids and Fast Charging Stations in Islanded Mode

Dener Brandao, Joao Callegari, Gabriel Ramos, Danilo Brandao, Igor Pires Universidade Federal de Minas Gerais, Brazil

#7095 | Controllability-Oriented Design Method of DFIGs in Wind Turbine Systems

Seyedali Seyed-Bouzari¹, Annette Muetze¹, Johann Peter Bacher¹, Boštjan Polajžer² ¹Graz University of Technology, Austria; ²University of Maribor, Slovenia

#7125 | Investigation of Startup Characteristics of LSMs Considering Changing Grid Conditions Using a FE-Aided Simulation Strategy

Thomas Krainer, Gabriel Weissitsch, Edmund Marth, Gerd Bramerdorfer, Markus Peer Johannes Kepler University Linz, Austria

#7162 | Comparison of Inner and Outer Rotor Flux Reversal Machines Using an Efficiency-Based Metric for Wave Energy Converters

Farrel Asker, Nick Baker Newcastle University, United Kingdom

POSTER SESSION 2

Tuesday, May 20 | 1:30 PM - 3:30 PM

AZALEA BALLROOM

Session Chairs:

Caleb Li, Toshiba International R&D Peng Han, Ansys Inc.

Rotating Electric Machines 5

#7132 | Simple Pseudo-IPM Rotor Design of Axial Flux Machine for Wide Speed Range

Junichi Asama², Ryuki Yamaoka², Seiji Saiga¹ ¹F.C.C. Co., Ltd., Japan; ²Shizuoka University, Japan

#7199 | The Yokeless Dual Rotor Electrically Excited Synchronous Machine

Tobias Zürrlein², Xinjun Liu¹, Marcel Baader², Florian Risch² ¹Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany; ²Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

#7204 | Emerging Trends in High-Speed Induction Machines and Converter Technologies for Industrial Applications

Shoaib Ahmed², Lassi Aarniovuori², Janne Nerg², Jan Barta¹, Ondrej Vítek¹

¹Brno University of Technology, Czech Rep.; ²LUT University, Finland

#7251 | Optimization of a Synchronous Reluctance Motor Design Using Genetic Algorithm and On-Off Method

Behnam Mosammam, Babak Fahimi, Poras Balsara University of Texas at Dallas, United States

#7271 | Structural Optimization of Meta-Reinforcement Learning-Based Finite-Control-Set Direct Torque Control of Permanent Magnet Synchronous Motors

Darius Jakobeit¹, Mario Peña¹, Maximilian Schenke¹, Barnabas Haucke-Korber¹, Oliver Wallscheid² ¹Universität Paderborn, Germany; ²Universität Siegen, Germany

Electric Drives 5

#7068 | Differentiable Predictive Current Control of Permanent Magnet Synchronous Motors

Marvin Meyer¹, Oliver Schweins¹, Oliver Wallscheid² ¹Universität Paderborn, Germany; ²Universität Siegen, Germany

#7071 | SiC Four-Leg Inverter Implementing Novel CMV Elimination for Advanced Motor Drive Applications

Annette von Jouanne¹, Francisca Oseghale¹, Pascal Lingom¹, Caleb Li², Emmanuel Agamloh¹, Alex Yokochi¹ ¹Baylor University, United States; ²Toshiba International Corporation, United States

#7129 | **PWM Loss Analysis in Electrically Excited Synchronous Machines: Implications for Loss-Optimal Operation** Felix Burkard, Andreas Gneiting, Nejila Parspour Universität Stuttgart, Germany

IEMDC 2025 | www.iemdc.org

#7136 | Pulsating Torque Harmonics in Electric Motors Driven by Carrier-Based PWM Multilevel Cascaded H-Bridge Inverter

Fils Pascal Lingom⁴, Idéal Oscar Libouga³, Roland Unruh², Joseph Song-Manguelle⁴, Mamadou Lamine Doumbia⁴, Emmanuel Agamloh¹

¹Baylor University, United States; ²Universität Paderborn, Germany; ³Université de Douala, Canada; ⁴Université du Québec à Trois-rivières, Canada

#7017 | A Deep Reinforcement Learning Paradigm for DC Motor Speed Control

Shoaib Ahmed, Usman Tariq, Ammar Hasan, Habibur Rehman American University of Sharjah, U.A.E.

Special Machines, Electromagnetic Actuators & Sensors 5

#7112 | Modeling and Testing of an Improved HEMM Linear Motor

Aaron D. Anderson², William Sixel², Kirsten Duffy³, Paul Passe¹ ¹HX5, LLC, United States; ²NASA John H. Glenn Research Center at Lewis Field, United States; ³University of Toledo, United States

#7130 | Speed Control of a Sensorless Seven-Phase Surface-Mounted PM Machines

Franck Scuiller, Florent Becker Ecole Navale, France

#7148 | Modeling and Control of Electrical Machine with In-Built Force Actuator and Radial Active Magnetic Bearings for Rotor Suspension

Muhammad Numan, Ibrahim Abubakar, Sadjad Madanzadeh, Tuomo Lindh, Niko Nevaranta LUT University, Finland

#7156 | Optimization of H∞-Control for Active Magnetic Bearing Suspended Rotor System

Ibrahim Abubakar, Muhammad Numan, Atte Putkonen, Tuomo Lindh, Niko Nevaranta LUT University, Finland

#7159 | The Limits of Pole Changing Operation of a Nine-Phase Induction Motor

Pedro Montoaneli Bichara, Braz J. Cardoso Filho, Rodrigo R. Bastos Universidade Federal de Minas Gerais, Brazil

#7181 | Design of a 27 kW 100 kRPM Permanent Magnet Rotor and Bearing System

Miika Parviainen, Charles Nutakor, Jussi Sopanen LUT University, Finland

Thermal, Materials & Efficiency Challenges 4

#7207 | A Practical Implementation for Field-Based Computation of Core Loss in Permanent Magnet Synchronous Machines

Andrés Beltrán-Pulido², Dionysios Aliprantis², Ilias Bilionis², Nicholas Chase¹, Alfredo Munoz¹ ¹Ford Motor Company, United States; ²Purdue University, United States

#7227 | Power Factor Enhancement with Variable Flux Memory Motor for Heating, Ventilation, and Air Conditioning Applications

Erkin Atay Toka², Baris Kuseyri¹, Firuzi Keyvan¹ ¹Middle East Technical University, Turkey; ²RWTH Aachen University, Germany

#7247 | Effects of Potting and Slot Liner Material

Characteristics on Thermal Behavior of a Traction Motor Sun Lee², Arthur Zajac², Jigar Mistry¹, Reza Nasirizarandi¹, Ofelia Jianu², Narayan Kar² ¹Schaeffler Americas, Canada; ²University of Windsor, Canada

#7259 | Comparative Evaluation of Cooling Methods and Their Combinations in Electric Motors Hasnain Nisar, Ali Bazzi University of Connecticut, United States

#7266 | Experimentally Calibrated FEA Models for Losses Analysis of High-Speed Induction Motors Equipped with Cage Solid Rotors

Yulong Cui¹, Mostafa Ahmadi Darmani², Christopher Gerada², Andrea Cavagnino¹ ¹Politecnico di Torino, Italy; ²University of Nottingham, United Kingdom

Design Optimization, Modeling & Simulation 5

#7114 | Electric Motor Cogging Torque Prediction with Vision Transformer Models

Siyuan Sun¹, Ye Wang³, Toshiaki Koike-Akino³, Tatsuya Yamamoto², Yusuke Sakamoto², Bingnan Wang³ ¹Iowa State University, United States; ²Mitsubishi Electric Corporation, Japan; ³Mitsubishi Electric Research Laboratories, United States

#7145 | Optimal Current Trajectory Evaluation for Sensorless Controlled Synchronous Machines Based on Finite Element Analysis

Matthias Hofer, Richard Spiessberger Technische Universität Wien, Austria

#7180 | Effect of Rotor Type on Open-Set Derating Operations of Multi-Three-Phase Synchronous Machines

Simone Ferrari, Sandro Rubino, Gianmario Pellegrino Politecnico di Torino, Italy

#7191 | Influence of Hyperparameters in Neural State-Space Models for Data-Driven Black-Box Modelling of Synchronous Motors: A Case Study

Philipp Mueller, Stefan Haehnlein, Jan Philipp Degel, Christian Kloeffer University of Applied Sciences Offenburg, Germany

entreshing of Applied Golenoes offenburg, Germany

#7237 | Assessment of AC Losses and Torque Density Enhancement in Hairpin Windings for Axial Flux Induction Motors Carlos Gálvez-Araya¹, Carlos Madariaga-Cifuentes¹, Cesar Gallardo², Felipe Santacruz¹, Juan A. Tapia Ladino¹ ¹Universidad de Concepción, Chile; ²University of Nottingham, United Kingdom

#7238 | Modeling and Analysis of PWM-Induced Current Ripple in Wound-Field Synchronous Machine Le Chang, Peng Peng *General Motors, United States*

Condition Monitoring, Fault Diagnosis & Prognosis 4

#7101 | A Motor Vibration Analysis Platform Using Typhoon-HIL Simulator

Obinna Onodugo, Emmanuel Agamloh, Pascal Lingom Baylor University, United States

#7141 | Generalized ML Approach for Fault Diagnosis of Rotating Machinery Using Domain-Based Features

Akshay Kakkar, Viraj E, Tanya Chaudhary, Erin Lee, Trupti Chavan, Deepak Mittal, Don Williams, Derek Snaidauf, Edward Bowen, Sunil Reddy Tiyyagura Deloitte, United States; Deloitte, India

#7206 | Breakdown Performance of Motor Winding Insulation Under Low Pressure Conditions

Easir Arafat, Farzana Islam, Md Asifur Rahman, Saikat Chowdhury, Mona Ghassemi University of Texas at Dallas, United States

#7222 | Partial Discharge Localization Along Medium Voltage Cables

Bhuban Dhamala, Mona Ghassemi University of Texas at Dallas, United States

#7246 | Impact of Load Sharing Among Induction Motor Drives on Reliability and Life Expectancy Hanady Krieshan, Ali Bazzi

University of Connecticut, United States

Transportation Applications 5

#7085 | Optimisation of Additively Manufactured Hairpin Windings for High Power Density Traction Motors

Hadish Tesfamikael, Riccardo Notari, Mukhammed Murataliyev, Meiqi Wang, Christopher Gerada, Michele Degano University of Nottingham, United Kingdom

#7089 | Minimizing Losses in Electric Drivetrains: A Comparative Analysis of Inverter Topologies, Switching Frequencies, and Modulation Techniques Lukas Böcker, Enes Ayaz, Luca Peretti *KTH Royal Institute of Technology, Sweden*

#7109 | Hybrid Excitation Variable Flux Memory Motor for Enhancing Output Power and Efficiency During WLTC Driving Cycle in Traction Applications

Riku Shinohara, Ren Tsunata, Masatsugu Takemoto, Jun Imai Okayama University, Japan

#7133 | Design of Reduced and Rare-Earth-Free PM-Assisted SynRMs for Electric Vehicles to Overcome Electromagnetic-Structural Challenges

Hossain Mohammadi², Reza Nasirizarandi², Jigar Mistry², Aiswarya Balamurali¹ ¹Schaeffler, Canada; ²Schaeffler Americas, Canada

#7152 | Application of the Transmotor-Flywheel Technology to Mild Hybrid Powertrain for Fuel Economy Improvement

Zhemin Hu¹, Mehrdad Ehsani² ¹Shanghai Electric Fuji Electric Power Technology Co., Ltd., China; ²Texas A&M University, United States

#7167 | Electromagnetic Design and Analysis of an Asymmetric Dual Three Phase Slotless 3D Airgap Electric Machine for High Power Density Applications

Md Junaed Al Hossain, Junyeong Jung, Md Sariful Islam, Iqbal Husain North Carolina State University, United States

POSTER SESSION 3

Tuesday, May 20 | 3:30 PM - 5:00 PM

AZALEA BALLROOM

Session Chairs:

Sajjad Mohammadi, *Massachusetts Institute of Technology* Yiming Shen, *Nanyang Technological University*

Rotating Electric Machines 6

#7275 | A Novel Topology of PM-Assisted Synchronous Reluctance Motor with Fluid Flux Barriers and Rectangular Magnets

Vishal M. J., Baylon Godfrey Fernandes Indian Institute of Technology Bombay, India

#7295 | Effects of Eccentricity on Dual Rotor Single Stator Axial Flux PM Machines

Sina Khalesidoost², S. Mehdi Seyedi¹, Dorsa Talebi¹, Sri Vignesh Sankarraman², Nick A. Martin¹, Matthew C. Gardner² ¹Texas A&M University, United States; ²University of Texas at Dallas, United States

#7311 | Sensitivity to Demagnetization in Interior and Surface PM Electric Machines for Line-Start Applications

Aquib Ahmed², Md Khalid Mahmud Bin Azam², Rajib Mikail¹, Yilmaz Sozer² ¹ABB Corporation, United States; ²University of Akron, United States

#7319 | Advanced Magnetic Equivalent Circuit Modeling for Electrically Excited Synchronous Machines with Rotor Rotation Federica Graffeo², Silvio Vaschetto², Alberto Tenconi²,

Gerd Bramerdorfer¹, Andrea Cavagnino² ¹Johannes Kepler University Linz, Austria; ²Politecnico di Torino, Italy

Electric Drives 6

#7195 | Disturbance Rejection Optimization for Permanent Magnet Synchronous Motor Systems Based on Modified Linear Active Disturbance Rejection Control

Chenggang Wang³, Hui Yang³, Jianhu Yan¹, Shuhua Fang³, Heyun Lin³, Yiming Shen²

¹Nanjing University of Science and Technology, China; ²Nanyang Technological University, China; ³Southeast University, China

#7217 | Reinforcement Learning-Based Direct Torque Control of Externally Excited Synchronous Motors: A Proof of Concept

Barnabas Haucke-Korber², Nyi Nyi Aung¹, Maximilian Schenke², Mario Peña², Darius Jakobeit², Oliver Wallscheid³ ¹Louisiana State University, United States; ²Universität Paderborn, Germany; ³Universität Siegen, Germany

#7220 | Calculation of Optimized Pulse Patterns for Electric Drives with an End-to-End Differentiable Simulation Framework

Lukas Hölsch², Daniel Wiechmann², Oliver Schweins¹, Oliver Wallscheid²

¹Universität Paderborn, Germany; ²Universität Siegen, Germany

#7224 | Active Flying Capacitor Voltage Balancing in Single-Phase 5L-ANPC Inverter

Pengwei Li², Ali Bazzi², Zhe Zhang¹ ¹Eaton, United States; ²University of Connecticut, United States

#7245 | Active Torque Capability Determination Under Unity Power Factor Operation of Biaxial Excitation Synchronous Machines

Krishna Mpk Namburi², Prerit Pramod¹, Ion Boldea⁴, Igbal Husain³

¹MicroVision Inc, United States; ²Nexteer Automotive, United States; ³North Carolina State University, United States; ⁴Politehnica University Timisoara, Romania

#7250 | Quantitative Analysis of Filter Parameters in an Electric Motor Drive

Pradeepsundar Simini¹, David Klink¹, Behrooz Bahrani¹, Firuz Zare²

¹Monash University, Australia; ²Queensland University of Technology, Australia

#7305 | A Novel High-Frequency Injection Method Towards Speed-Sensorless Drive Control of Induction Machines Over Full Speed Range

Jingjie Wu², Abraham Goldsmith¹, Lei Zhou², Dehong Liu¹, Bingnan Wang¹, Yebin Wang¹

¹Mitsubishi Electric Research Laboratories, United States; ²University of Wisconsin–Madison, United States

Special Machines, Electromagnetic Actuators & Sensors 6

#7236 | Experimental Evaluation of Force-Current

Characteristics of a Radial Electromagnetic Bearing Kamisetti N V Prasad, Aditya Raj, Gopalaratnam Narayanan *Indian Institute of Science, India*

#7241 | Performance Evaluation of Single-Pulse-Operated High-Speed Switched Reluctance Machine Towards Multi-Objective Optimization

Samrat Das¹, Krity Rao², Gopalaratnam Narayanan¹ ¹Indian Institute of Science, India; ²National Institute of Technology Goa, India

#7255 | A Low-Cost Ferrite Brushless DC Motor for Cordless Power Tool Applications

Md Tawhid Bin Tarek, Jarrett Dunston, Dale London, Thomas McNeil, Praveen Gambhir, Teja Kalavala, Dillon Brown Techtronic Industries Company Limited, United States

#7268 | Comparison Between Pole-Phase Modulation (PPM) Technique and Modulated Rotational Harmonic (MRH) Excitation in Nine-Phase Brushless Wound-Field Synchronous Machine S. Mehdi Seyedi, Dorsa Talebi, Hamid A. Toliyat Texas A&M University, United States

#7276 | Finite-Control-Set Current Predictive Control of Linear Switched Reluctance Motors Using Multi-Parameter Dynamic Linearization Model

Su-Dan Huang¹, Rongsheng Lin¹, Guang-Zhong Cao¹, Junqi Xu² ¹Shenzhen University, China; ²Tongji University, China

#7288 | Design Aspects of a Compact Variable Reluctance Resolver

Valerii Abramenko, Ilya Petrov, Juha Pyrhönen LUT University, Finland

#7289 | Linear Variable Reluctance Resolver with a Modular Design

Valerii Abramenko, Ilya Petrov, Juha Pyrhönen LUT University, Finland

#7294 | Analysis of Bridge Placement and Ferromagnetic Piece Curvature on Performance of Coaxial and Flux Angle Mapping Magnetic Gears

Salek Khan, Parisa Afsari, Matthew C. Gardner University of Texas at Dallas, United States

#7302 | Double Rotor Capacitor-Resonated Electromagnetic Torque Converter

Nuwantha Fernando², Pirat Khunkitti¹, Minh Bui³, Inam Nutkani² ¹Khon Kaen University, Thailand; ²Royal Melbourne Institute of Technology, Australia; ³Royal Melbourne Institute of Technology Vietnam, Vietnam

#7308 | Effect of Permanent Magnet Shape in High-Speed Rotor on the Performance of a Magnetic Gear

Saptarshi Dey, Baylon Godfrey Fernandes, Kishore Chatterjee Indian Institute of Technology Bombay, India

#7312 | Full Bridge Converter Based SRM Drive with Extended Conduction Strategy

Fuat Kucuk Kyoto University of Advanced Science, Japan

#7313 | 3D Topology and Parametric Optimization of a Axial-Radial Flux PMSM with SMC Stator Core for Park Lock Actuators

Mohanraj Muthusamy¹, Yulanda King³, Sainan Xue² ¹AESIM. Tech, Canada; ²Powersys, Inc, United States; ³Stoneridge, United States

#7315 | A Unified Model for Radial Flux Bearingless Motors with Short-Circuited Suspension Windings

Niloofar Ramroodi, Eric Severson University of Minnesota, United States

#7318 | Winding Factors and Harmonics of Coreless Axial Flux PM Machines

Matin Vatani³, John F. Eastham², Xiaoze Pei², Dan M. Ionel¹ ¹SPARK Lab, University of Kentucky, United States; ²University of Bath, United Kingdom; ³University of Kentucky, United States

Design Optimization, Modeling & Simulation 6

#7272 | A Parameterized Nonlinear Magnetic Equivalent Circuit Model for Fast Design and Comparison of Surface Permanent Magnet Synchronous Machines

Manuel De Jesus Contreras, Danial Kazemikia, Salek Khan, Matthew C. Gardner

University of Texas at Dallas, United States

#7291 | Analytical Method for Node-Precise Airgap Reluctance Calculation in Magnetic Equivalent Circuits and Alternative Winding Distribution Approach for Concentrated Windings Martin Bremer, Raphael Keller, Matthias Brodatzki, Martin Doppelbauer *Karlsruhe Institute of Technology, Germany*

#7299 | Multi-Stage Design and Analysis of a Permanent Magnet Synchronous Machine with Parallel Comparison Tracks Qixuan Wang¹, Torbjörn Thiringer¹, Joachim Härsjö² ¹Chalmers University of Technology, Sweden; ²Volvo Cars, Sweden

#7303 | Multidisciplinary Design Approach for On-Board High-Speed Energy Conversion Machinery

Tuhin Choudhury, Juuso Narsakka, Kristóf Márton Szombati, Sadjad Madanzadeh, Valerii Abramenko, Niko Nevaranta, Henrik Ebel, Teemu-Turunen Saaresti, Juha Pyrhönen, Jussi Sopanen LUT University, Finland

Condition Monitoring, Fault Diagnosis & Prognosis 5

#7249 | Impact of Thermal Cycling on Partial Discharge Inception Voltage in Random-Wound Electric Aircraft Motors

Anjana Jayasanka Samarakoon², Thomas F. Tallerico¹, Cameron Little², Anubhav Bose², Aaron D. Anderson¹, Geoffrey Swisher², Kiruba Haran² ¹NASA John H. Glenn Research Center at Lewis Field, United States; ²University of Illinois Urbana Champaign, United States

#7257 | Analytical Modeling and Analysis of Current Sensor Faults in PMSM Drives

Shaya Abou Jawdeh, Ali Bazzi University of Connecticut, United States

#7298 | Estimation of Induction Motor Power Factor Using Machine Learning

Obinna Onodugo, Emmanuel Agamloh, Daniel Addae, Gordon Asante Baylor University, United States

#7301 | Physics Informed Neural Network Induction Motor Equivalent Circuit Parameter Estimation with Only Electrical Measurements Stephen Hurt, Hamid A. Toliyat

Texas A&M University, United States

Transportation Applications 6

#7230 | Enhancing Electromagnetic Performance of Traction PMaSynRMs with Asymmetrical Rotor Configurations

Buddhika De Silva², Hossain Mohammadi¹, Reza Nasirizarandi¹, Jigar Mistry¹, Narayan Kar² ¹Schaeffler Americas, Canada; ²University of Windsor, Canada

#7243 | Comparison Between SPM and IPM Motor for Battery-Powered Electric Ferry Application

Vu-Khanh Tran², Sarbajit Paul¹, Jae-Gil Lee¹, Jae-Hak Choi¹, Pil-Wan Han¹, Yon-Do Chun¹ ¹Korea Electrotechnology Research Institute, Korea; ²University of Science and Technology, Korea

#7248 | Electromagnetic – Mechanical Comparative Analysis of Rare-Earth Free Traction PMASynRM with Different Barrier Shapes Andrew Botham², Arthur Zajac², Narayan Kar², Reza Nasirizarandi¹, Hossain Mohammadi¹, Jigar Mistry¹ ¹Schaeffler Americas, Canada; ²University of Windsor, Canada

#7262 | Analysis of Reduced Rare Earth PM-Assisted Synchronous Reluctance Motor Enabled with Iron Nitride for High-Speed Traction Application

Robin Wilson, Praveen Kumar, Ayman EL-Refaie Marquette University, United States

#7016 | Comparative Performance Analysis of PI, Fuzzy Logic, and Sliding Mode Controllers for the Battery Energy Consumption of EV Traction System

Ahmad Rizwan, Shoaib Ahmed, Rached Dhaouadi, Habibur Rehman American University of Sharjah, U.A.E.

Student Demonstrations

Demo Schedule

Student Demonstrations – Azalea Ballroom	
OPEN – Monday, May 19	5:00 PM - 7:30 PM
JUDGING – Tuesday, May 20	1:30 PM - 5:00 PM

NEW FOR 2025! Student Demonstrations provide an opportunity for students from various universities and countries to showcase their emerging technology research outcomes and interact with academia and industry.

Table 1: Real-Time Control and Comparative Analysis of a Lab-Prototyped Ultra-High-Speed (UHS) PMSM Using MATLAB for Embedded and dSPACE Systems

Md Moniruzzaman, Md Rashedur Rahman Mississippi State University, USA

Table 2: Stator-Excited Synchronous Motors

Oluwaseun Badewa, Ali Mohammadi, Donovin Lewis University of Kentucky, USA

Table 3: Dual-Stage, Multi-Module Electric Machine for Electric Aircraft Propulsion

Matin Vatani, Diego A. Lopez Guerrero, Oluwaseun A. Badewa University of Kentucky, USA

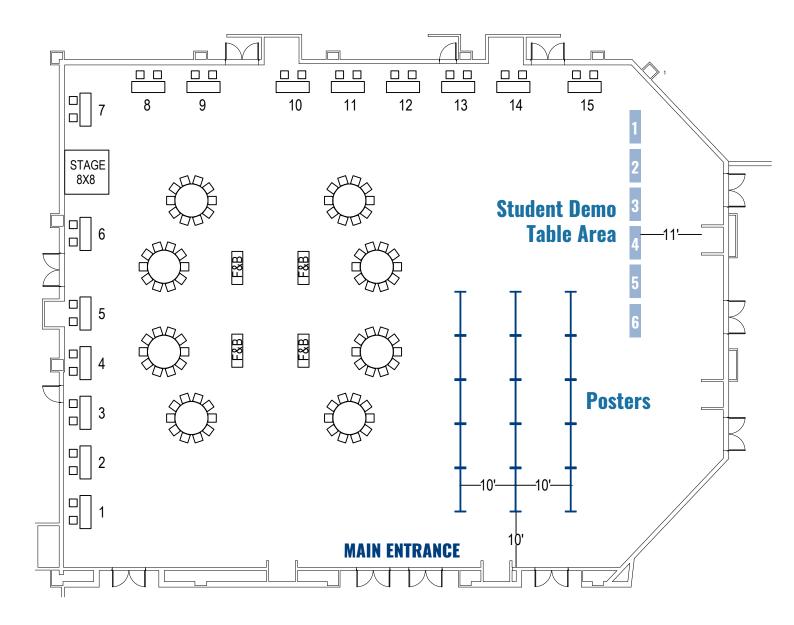
Table 4: Reflected Voltage Free AC Motors with Adaptative Impedance Coils

Mohamed Metwly University of Tennessee, Knoxville, USA

Table 5: Advanced High Power Density n-Layer Hairpin Winding Permanent Magnet Machine for EVs

Wentao Zhang

Southeast University, People's Republic of China


 Table 6: High Performance Rare-Earth Free Interior Permanent Magnet Motor Enabled

 by Carbon Fiber Sleeve and Iron Nitride Magnets

Ali Al-Qarni, James Alexander Marquette University, USA

The Westin Houston Memorial City Exhibit Hall

Floor Plans

The Westin Houston Memorial City

Exhibitor Directory

PLATINUM SPONSOR

Ansys

2600 Ansys Dr. Canonsburg, PA 15317 USA

americassalesteam@ansys.com www.ansys.com

Our Mission: Powering Innovation That Drives Human Advancement.

When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. Ansys solutions drive the development of safer, competitively differentiated, and cost-effective products in the automotive and transportation industry. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys.

SILVER SPONSOR

Pittsburgh Electrical Insulation PEI

800 Martha Street Munhall, PA 15120 USA

412-462-6300

sales@peipittsburgh.com www.peipittsburgh.com

Pittsburgh Electrical Insulation is a manufacturer, converter, and distributor of all your electrical insulation needs. PEI has an excellent team that is dedicated to fulfilling your requests. As a service oriented company, we are committed to globally delivering distinguished products and services. Pittsburgh Electrical Insulation makes it a priority to build strong relationships with industry leading suppliers, so you can find all the electrical insulation products you need with ease. As a connected electrical insulation provider, our products are incomparable.

EXHIBITORS

Ansys

TABLETOP 5

\nsys

2600 Ansys Dr. Canonsburg, PA 15317 USA

TABLETOP 5

americassalesteam@ansys.com www.ansys.com

Our Mission: Powering Innovation That Drives Human Advancement.

When visionary companies need to know how their world-changing ideas will perform, they close the gap between design and reality with Ansys simulation. For more than 50 years, Ansys software has enabled innovators across industries to push boundaries by using the predictive power of simulation. Ansys solutions drive the development of safer, competitively differentiated, and cost-effective products in the automotive and transportation industry. From sustainable transportation to advanced semiconductors, from satellite systems to life-saving medical devices, the next great leaps in human advancement will be powered by Ansys.

Comsol

100 District Ave Burlington, MA 01803 USA

www.comsol.com

COMSOL is a global provider of simulation software for product design, engineering, and research in technical enterprises, labs, and universities. COMSOL Multiphysics® is an integrated environment for creating physics-based models and simulation applications.

Exhibitor Directory

Conifer Systems Inc.

1222 Alderwood Ave Sunnyvale, CA 94089 USA

hello@conifer.io https://conifer.io/

Conifer designs and manufactures **CONIFER** advanced, sustainable and efficient electric motors and powertrains for various applications including Small Mobility, Industrial & HVAC, automotive industries range in size from 1-25hp and are more efficient, cheaper and lighter than state of the art.

Dassault Systemes

1301 Atwood Ave, 101W Johnston, RI 02920 USA

www.simulia.com

SIMULIA, a Dassault Systèmes brand, delivers science-based multiscale, multiphysics modeling and simulation solutions to help companies accelerate innovative product development and meet sustainability mandates. Key simulation technologies include structures, electromagnetics, fluids, multibody dynamics, vibro-acoustics and design optimization. Designers, engineers, scientists and all innovators leverage the 3DEXPERIENCE platform to collaborate through a unified modeling and simulation (MODSIM) approach to create and experience Virtual Twins. Our end-to-end industry processes enable organizations to capture knowledge and know-how, putting the power of MODSIM in the hands of users and all stakeholders to eliminate material waste, reduce costly time-consuming physical testing, enhance quality, and improve real-world performance

https://gmtamerica.com/stiefelmayer

GMTA is the exclusive North American representative of Stiefelmayer, a leader in high-precision laser cutting technology. Stiefelmayer's advanced laser solutions offer unparalleled accuracy and efficiency, setting new standards in industrial cutting applications. Visit our booth to meet our experts and explore how Stiefelmayer's technology can optimize your manufacturing processes. We look forward to discussing your specific application needs!

IMPEDYME Inc.

TABLETOP 12

TABLETOP 9

8450 Tyco Rd. Vienna, VA 22182 USA

TABLETOP 6

TABLETOP 13

sales@impedyme.com www.impedyme.com

IMPEDYME is the world leader in the development of ultra-fast Real-Time Digital Simulator, novel Hardware-In-the-Loop (HIL) testing equipment and and Combined HIL and Power (CHP) testing and emulation systems to design, test and optimize control and protection systems used in power grids, power electronics, motor drives, automotive industry, trains, aircraft and various industries, as well as R&D centers and universities.

LCD LaserCut AG/SWD AG Stator und Rotortechnik

LCD LaserCut AG

Kaisermatt 3 | CH-5026 Densbüren

www.lcd-lasercut.ch

SWD AG Stator und Rotortechnik

Kaisermatt 3 | CH-5026 Densbüren

www.swd-technology.com

LCD LaserCut AG, SWD AG and AxD AG showcase cutting-edge Swiss expertise and innovation in electric motor production. LCD LaserCut AG specializes in precision laser cutting for prototyping and small-series manufacturing of high-end stator and rotor components made from electrical steel. SWD AG focuses on high-volume stamping and bonding of electrical steel, supporting the industrialization and large-scale production of efficient stator and rotor cores. AxD AG, a joint subsidiary of LCD and SWD, develops advanced production technologies for electrical steel-based stator and rotor cores – wound, bonded, and precision-machined – for axial flux motors.

38

Exhibitor Directory

MagneForce Software Systems, Inc

3730 California Road Orchard Park, NY 14127 USA

716-710-7335 hlewis@magneforcess.com www.magneforcess.com

TABLETOP 10

MagneForce Software Systems produces software for design and simulation of rotating electric machinery. MagneForce products combine Finite Element techniques together with various time based circuit models to provide a total electric machine design environment. Unlike general purpose FE packages MagneForce simulators compute directly machine performance parameters such as voltages, currents, torque, power and efficiency. This is all done in an easy to learn and use Windows environment.

Mathworks

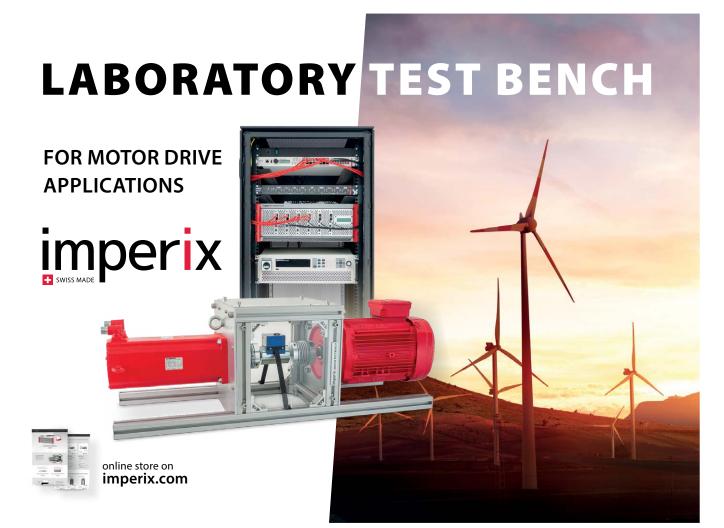
3 Apple Hill Drive Natick, MA 01760 USA

www.mathworks.com

The MATLAB and Simulink product families are fundamental applied math and computational tools adopted by more than 6,500 universities and colleges. MathWorks products help prepare students for careers in industry, where the tools are widely used for data analysis, mathematical modeling, and algorithm development in collaborative research and new product development.

Nayak Corporation, Inc.

3705 Quakerbridge Rd., Ste 201 Hamilton, NJ 08619 USA


(609) 279-9050 <u>www.nayakcorp.com</u>

Our expertise is in power system modeling, simulation and studies which covers a wide range of power engineering disciplines - power system protection, HVDC, FACTS, distributed and renewable energy resources, micro-grid, etc. We provide studies and testing services in addition to sales, technical support and training for power system simulators. Nayak is highly knowledgeable and experienced in the following application areas, simulation tools.

- Real-time modeling and simulation
- Hardware-in-the-loop (HIL) and software-in-the-loop (SIL) testing and studies including both
- Control hardware in the loop (CHIL) and power hardware in the loop (PHIL)
- Digital real-time simulation platforms:
- Real-Time Digital Simulator (RTDS) systems from RTDS Technologies, Inc.
- RSCAD modeling software
- Offline EMT simulation tool PSCAD.

Nayak Corporation is the sole representative of PSCAD and RTDS in the United States. PSCAD is a simulation tool for analyzing power systems transients, and RTDS consists of parallel processing hardware and software optimized to perform electromagnetic transient simulation in hard real time.

TABLETOP 11

PITTSBURGH ELECTRICAL INSULATION MANUFACTURER I CONVERTER I DISTRIBUTOR

THE RIGHT SOURCE, RIGHT ON TIME. ON <u>YOUR</u> SCHEDULE

USA Manufacturing | Global Sourcing | UL Certified to Slit 3M Tapes | Prototypes | Samples | Short Runs | High Volume

MANUFACTURING

RES-I-LAM - NMN, DMD 180, NKN LAMINATES RES-I-GLAS & POLYGLAS BANDING TAPE RES-I-STRAINT EDGING TAPE RES-I-FLEX ARMOR TAPE B-STAGE SURGE ROPE & DACRON FELT RES-I-BAND BANDING FILM & POYIMIDE FILM HEAT-SHRINKABLE POLYESTER (HSP) TAPE

CONVERTING

- INSULATING PAPERS: THERMAVOLT / TUFQUIN/ CEQUIN DMD / NMN / NKN
- DMD / NMN / NKN DIAMOND-DOT & PRE-PREG PAPERS
- MICA TAPES
- ARAMID, DACRON & ARAMID FELTS PET/POLYESTER FILMS
 - CUSTOM SLIT TO YOUR SPECS

DISTRIBUTING

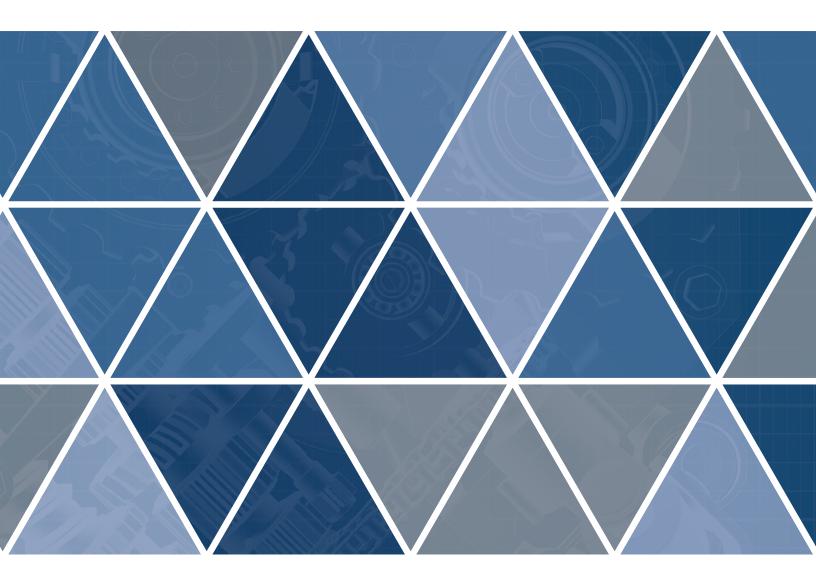
WIDE VARIETY OF PRODUCTS: ADHESIVES, SLEEVING, WIRE & CABLE, RESINS, SLOT-LINERS

INDUSTRY-LEADING SUPPLIERS: 3M, ATKINS & PIERCE, DELFINGEN, DUNBAR, DUPONT, HESGON, IPG, ISOVOLTA, KANEKA, KREMPEL, LENNI, ST. GOBAIN, SWECO, VARFLEX

1-800-462-4734 | sales@peipittsburgh.com www.peipittsburgh.com

See You in Milwaukee!

May 17–May 20, 2027 Milwaukee, Wisconsin USA


IEEE IEMDC-2027

IEEE IEMDC-2027 will be held on May 17 - May 20, 2027, in Milwaukee, Wisconsin, USA. If you have interest in serving as a volunteer (reviewer, session chair, track chair, organizing committee, or industry exhibitor), please scan the QR code below and fill out your contact information. If you have any questions, please feel free to contact the IEMDC-2027 General Chair, Dr. JiangBiao He, whose email is provided as follows:

> JiangBiao He, Ph.D. General Chair, IEMDC-2027 University of Tennessee, USA EMAIL: jiangbiao.he@utk.edu

www.iemdc.org